992 resultados para optic fiber sensor
Resumo:
We review the state-of-the-art in photonic crystal fiber (PCF) and microstructured polymer optical fiber (mPOF) based mechanical sensing. We first introduce how the unique properties of PCF can benefit Bragg grating based temperature insensitive pressure and transverse load sensing. Then we describe how the latest developments in mPOF Bragg grating technology can enhance optical fiber pressure sensing. Finally we explain how the integration of specialty fiber sensor technology with bio-compatible polymer based micro-technology provides great opportunities for fiber sensors in the field of healthcare.
Resumo:
This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 µm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.
Resumo:
We present femtosecond laser inscribed phase masks for the inscription of Bragg gratings in optical fibres. The principal advantage is the flexibility afforded by the femtosecond laser inscription, where sub-surface structures define the phase mask period and mask properties. The masks are used to produce fibre Bragg gratings having different orders according to the phase mask period. The work demonstrates the incredible flexibility of femtosecond lasers for the rapid prototyping of complex and reproducible mask structures. We also consider three-beam interference effects, a consequence of the zeroth-order component present in addition to higher-order diffraction components. © 2012 SPIE.
Resumo:
Gastroesophageal reflux disease (GERD) is a common cause of chronic cough. For the diagnosis and treatment of GERD, it is desirable to quantify the temporal correlation between cough and reflux events. Cough episodes can be identified on esophageal manometric recordings as short-duration, rapid pressure rises. The present study aims at facilitating the detection of coughs by proposing an algorithm for the classification of cough events using manometric recordings. The algorithm detects cough episodes based on digital filtering, slope and amplitude analysis, and duration of the event. The algorithm has been tested on in vivo data acquired using a single-channel intra-esophageal manometric probe that comprises a miniature white-light interferometric fiber optic pressure sensor. Experimental results demonstrate the feasibility of using the proposed algorithm for identifying cough episodes based on real-time recordings using a single channel pressure catheter. The presented work can be integrated with commercial reflux pH/impedance probes to facilitate simultaneous 24-hour ambulatory monitoring of cough and reflux events, with the ultimate goal of quantifying the temporal correlation between the two types of events.
Resumo:
We demonstrate a bi-metal coated (platinum and gold or silver), localized surface plasmon resonance fiber sensor with an index sensitivity exceeding 11,900 nm/RIU, yielding an index resolution of 2 × 10-5 in the aqueous index regime. This is one of the highest index sensitivities achieved with an optical fiber sensor. The coatings consist of arrays of bi-metal nano-wires (typically 36 nm in radius and 20 μm in length), supported by a silicon dioxide thin film on a thin substrate of germanium, the nano-wires being perpendicular to the longitudinal axis of the D-shaped fiber.
Resumo:
We review the state-of-the-art in photonic crystal fiber (PCF) and microstructured polymer optical fiber (mPOF) based mechanical sensing. We first introduce how the unique properties of PCF can benefit Bragg grating based temperature insensitive pressure and transverse load sensing. Then we describe how the latest developments in mPOF Bragg grating technology can enhance optical fiber pressure sensing. Finally we explain how the integration of specialty fiber sensor technology with bio-compatible polymer based micro-technology provides great opportunities for fiber sensors in the field of healthcare.
Resumo:
A simple fiber sensor capable of simultaneous measurement of liquid level and refractive index (RI) is proposed and experimentally demonstrated. The sensing head is an all-fiber modal interferometer manufactured by splicing an uncoated single-mode fiber with two short sections of multimode fiber. The interference pattern experiences blue shift along with an increase of axial strain and surrounding RI. Owing to the participation of multiple cladding modes with different sensitivities, the height and RI of the liquid could be simultaneously measured by monitoring two dips of the transmission spectrum. Experimental results show that the liquid level and RI sensitivities of the two dips are 245.7 pm/mm, -38 nm/RI unit (RIU), and 223.7 pm/mm, -62 nm/RIU, respectively. The approach has distinctive advantages of easy fabrication, low cost, and high sensitivity for liquid level detection with the capability of distinguishing the RI variation simultaneously. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Dacryocystorhinostomy is the treatment of choice for the obstruction of the lachrymal apparatus. At the end of last century, the development of the endoscopic instruments for nasosinusal surgery has made it possible to do it through the endoscopic pathway. Nonetheless, anatomical variations make it difficult to have reproducibility endonasaly. Aim: study the endoscopic anatomy of the lachrymal fossa through transillumination of the common canaliculus. Study design: experimental. Materials and Methods: we dissected 40 lachrymal pathways from 20 human cadavers, in three stages: 1. identification and dilation of the lachrymal canaliculus. 2 Optic fiber beam introduction; 3 - endoscopic dissection of the lachrymal sac, describing its position. Results: the most frequent position of the lachrymal sac was between the free border of the middle turbinate and its insertion immediately underneath it. The maxillary line was seen in 95% of the cases. Septoplasty was needed in 12.5%, unicifectomy in 35% and middle turbinectomy in 7.5%. Conclusion: Although the lachrymal sac has a more frequent location, its position varied considerably. The transillumination of the common canaliculus proved useful, solving the problem of the anatomical variability.
Resumo:
The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabView code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Tämän diplomityön päämääränä oli tutkia nykyisen optisen markkinasektorin nykytilaa ja ennakoida mahdollista tulevaa kapasiteetin tarpeen kasvua merkittävän taantumakauden jälkeen. Erityistä huomiota käytettiin kaapelin valmistuksen vaiheisiin ja näitä vastaaviin laitteisiin. Tätä kautta selvitettiin nykyisten markkinoilla toimivien laiteratkaisujen ominaisuudet. Työssä havaittiin kuitukaapeleiden rakenneratkaisujen muuttuvan asennettavuuden parantamisen ja kaapeleiden paremman kestävyyden suuntaan. Näiden muuttuessa tulevat valmistustekniikat ja menetelmät kehittymään vastaamaan uusia ratkaisuja. Laserhitsausmenetelmällä voidaan laajentaa kaapeleiden rakenneratkaisujen ja materiaalivaihtoehtojen valikoimaa perinteisen extruusiotekniikan rinnalle. Työ avaa uusia toteutusmandollisuuksia kaapelinvalmistusprosessiin, sekä antaa pohjaa uusien kaapelirakenteiden tuomiseen globaaleille optisen kuitukaapelin markkinoille.
Resumo:
Tungsten oxide thin films with three different compositions were deposited by reactive sputtering in an oxygen-argon plasma. In a system composed of a home made photochemical reactor coupled with an optic fiber spectrophotometer, the photochromic effect was studied in these oxide films as function of UV irradiation time, in ethanol, methanol and formaldehyde atmospheres. It was observed that the photochromic efficiency depends on the vapor chemical nature where the film is irradiated as well as the film composition. Kinetic analysis suggest that two kinds of optical absorption centers should respond by the photochromic effect in these films, one generated at film surface and other inside it, which one presenting a different time constant.
Resumo:
Production and generation of electrical power is evolving to more environmental friendly technologies and schemes. Pushed by the increasing cost of fossil fuels, the operational costs of producing electrical power with fossil fuels and the effect in the environment, like pollution and global warming, renewable energy sources gain con-stant impulse into the global energy economy. In consequence, the introduction of distributed energy sources has brought a new complexity to the electrical networks. In the new concept of smart grids and decen-tralized power generation; control, protection and measurement are also distributed and requiring, among other things, a new scheme of communication to operate with each other in balance and improve performance. In this research, an analysis of different communication technologies (power line communication, Ethernet over unshielded twisted pair (UTP), optic fiber, Wi-Fi, Wi-MAX, and Long Term Evolution) and their respective characteristics will be carried out. With the objective of pointing out strengths and weaknesses from different points of view (technical, economical, deployment, etc.) to establish a richer context on which a decision for communication approach can be done depending on the specific application scenario of a new smart grid deployment. As a result, a description of possible optimal deployment solutions for communication will be shown considering different options for technologies, and a mention of different important considerations to be taken into account will be made for some of the possible network implementation scenarios.
Resumo:
We propose and demonstrate a new technique for evanescent wave chemical sensing by writing long period gratings in a bare multimode plastic clad silica fiber. The sensing length of the present sensor is only 10 mm, but is as sensitive as a conventional unclad evanescent wave sensor having about 100 mm sensing length. The minimum measurable concentration of the sensor reported here is 10 nmol/l and the operating range is more than 4 orders of magnitude. Moreover, the detection is carried out in two independent detection configurations viz., bright field detection scheme that detects the core-mode power and dark field detection scheme that detects the cladding mode power. The use of such a double detection scheme definitely enhances the reliability and accuracy of the results. Furthermore, the cladding of the present fiber need not be removed as done in conventional evanescent wave fiber sensors.
Resumo:
One of the most important decisions to turn a substation automatic and no attended it relates to the communication media between this substation and Operation Center. Generally energy companies uses radio or optic fiber, depending of distances and infrastructure of each situation. This rule applies to common substations. Mobile substations are a particular case, therefore they are conceived for use at provisional situations, emergencies, preventive or corrective maintenance. Thus the telecommunication solution used at common substations are not applied so easily to mobile substations, due absence of infrastructure (media) or difficulty to insert the mobile substation data in existing automation network not long. The ideal media must supply covering in a great geographic area to satisfy presented requirements. The implantation costs of this big infrastructure are expensive, however a existing operator may be used. Two services that fulfill that requirements are satellite and cellular telephony. This work presents a solution for automation of mobile substations through satellite. It was successfully implanted at a brazilian electric energy concessionaire named COSERN. The operation became transparent to operators. Other gotten benefits had been operational security, quality in the supply of electric energy and costs reduction. The project presented is a new solution, designed to substations and general applications where few data should be transmitted, but there is difficulties in relation to the media. Despite the satellite having been used, the same resulted can be gotten using celullar telephony, through Short Messages or packet networks as GPRS or EDGE.
Resumo:
Nowadays, optic fiber is one of the most used communication methods, mainly due to the fact that the data transmission rates of those systems exceed all of the other means of digital communication. Despite the great advantage, there are problems that prevent full utilization of the optical channel: by increasing the transmission speed and the distances involved, the data is subjected to non-linear inter symbolic interference caused by the dispersion phenomena in the fiber. Adaptive equalizers can be used to solve this problem, they compensate non-ideal responses of the channel in order to restore the signal that was transmitted. This work proposes an equalizer based on artificial neural networks and evaluates its performance in optical communication systems. The proposal is validated through a simulated optic channel and the comparison with other adaptive equalization techniques