985 resultados para op-tical roughness
Resumo:
The main objective of the research is to link granular physics with the modelling of rock avalanches. Laboratory experiments consist to find a convenient granular material, i.e. grainsize and physical behaviour, and testing it on simple slope geometry. When the appropriate sliding material is selected, we attempted to model the debris avalanche and the spreading on a slope with different substratum to understand the relationship between the volume and the reach angle, i.e. angle of the line joining the top of the scar and the end of the deposit. For a better understanding of the mass spreading, the deposits are scanned with a laser scanner. Datasets are compared to see how the grain size and volume influence a debris avalanche. The relationship between the roughness and grainsize of the substratum shows that the spreading of the sliding mass is increased when the roughness of the substratum starts to be equivalent or greater than the grainsize of the flowing mass. The runout distance displays a more complex relationship, because a long runout distance implies that grains are less spread. This means that if the substratum is too rough the distance diminishes, as well if it is too smooth because the effect on the apparent friction decreases. Up to now our findings do not permit to validate any previous model (Melosh, 1987; Bagnold 1956).
Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data
Resumo:
In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS) height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80), while the wet season SAR data have somewhat higher secondary variation (R² = 0.59). This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
Scattering characteristics of multilayer fluoride coatings for 193 nm deposited by ion beam sputtering and the related interfacial roughnesses are investigated. Quarter- and half-wave stacks of MgF2 and LaF3 with increasing thickness are deposited onto CaF2 and fused silica and are systematically characterized. Roughness measurements carried out by atomic force microscopy reveal the evolution of the power spectral densities of the interfaces with coating thickness. Backward-scattering measurements are presented, and the results are compared with theoretical predictions that use different models for the statistical correlation of interfacial roughnesses.
Resumo:
Surface topography and light scattering were measured on 15 samples ranging from those having smooth surfaces to others with ground surfaces. The measurement techniques included an atomic force microscope, mechanical and optical profilers, confocal laser scanning microscope, angle-resolved scattering, and total scattering. The samples included polished and ground fused silica, silicon carbide, sapphire, electroplated gold, and diamond-turned brass. The measurement instruments and techniques had different surface spatial wavelength band limits, so the measured roughnesses were not directly comparable. Two-dimensional power spectral density (PSD) functions were calculated from the digitized measurement data, and we obtained rms roughnesses by integrating areas under the PSD curves between fixed upper and lower band limits. In this way, roughnesses measured with different instruments and techniques could be directly compared. Although smaller differences between measurement techniques remained in the calculated roughnesses, these could be explained mostly by surface topographical features such as isolated particles that affected the instruments in different ways.
Resumo:
Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols). In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT), conventional tillage (CT), and minimum tillage (MT) with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb) and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.). Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.
Resumo:
Coastal lagoons where salinity varies within a wide range during the year are colonized by euryhaline macrophytes which can develop extensive beds. Seasonal changes in biomass of Ruppia cirrhosa and Potamogeton pectinatus were studied in Tancada Lagoon (Ebro Delta, NE Spain) in order to reveal the environmental factors controlling their population development. Ruppia cirrhosa occupy a larger area of the lagoon than Potarnogeton pectinatus. Their maximum above ground biomasses are also different (495 g m-2 and 351 g m-2 ash free dry weight, respectively). Below ground biomass of Ruppia cirrhosa is between 9 and 53 % of the above ground biomass, while it is 3-40 % for Potamogeton pectinatus. Chlorophyll a contents show fluctuations similar to biomass. Low salinity and high turbidity caused by freshwater inflows favour Potamogeton expansion, while Ruppia development is favoured by high salinity and transparent water.
Resumo:
The Iowa Department of Transportation has been determining a present serviceability index (PSI) on the primary highway system since 1968. A CHLOE profilometer has been used as the standard for calibrating the Roadmeters that do the system survey. The current Roadmeter, an IJK Iowa DOT developed unit, is not considered an acceptable Roadmeter for determining the FHWA required International Roughness Index (IRI). Iowa purchased a commercial version of the South Dakota type profile (SD Unit) to obtain IRI. This study was undertaken to correlate the IRI to the IJK Roadmeter and retire the Roadmeter. One hundred forty-seven pavement management sections (IPMS) were tested in June and July 1991 with both units. Correlation coefficients and standard error of estimates were: r' Std. Error PCC pavements 0.81 0.15 Composite pavements 0.71 0.18 ACC pavements 0.77 0.17 The correlation equations developed from this work will allow use of the IRI to predict the IJK Roadmeter response with sufficient accuracy. Trend analysis should also not be affected.
Resumo:
After cemented total hip arthroplasty (THA) there may be failure at either the cement-stem or the cement-bone interface. This results from the occurrence of abnormally high shear and compressive stresses within the cement and excessive relative micromovement. We therefore evaluated micromovement and stress at the cement-bone and cement-stem interfaces for a titanium and a chromium-cobalt stem. The behaviour of both implants was similar and no substantial differences were found in the size and distribution of micromovement on either interface with respect to the stiffness of the stem. Micromovement was minimal with a cement mantle 3 to 4 mm thick but then increased with greater thickness of the cement. Abnormally high micromovement occurred when the cement was thinner than 2 mm and the stem was made of titanium. The relative decrease in surface roughness augmented slipping but decreased debonding at the cement-bone interface. Shear stress at this site did not vary significantly for the different coefficients of cement-bone friction while compressive and hoop stresses within the cement increased slightly.
Resumo:
This report describes a short-term study undertaken to investigate the potential for using dense three-dimensional (3D) point clouds generated from light detection and ranging (LIDAR) and photogrammetry to assess roadway roughness. Spatially continuous roughness maps have potential for the identification of localized roughness features, which would be a significant improvement over traditional profiling methods. This report specifically illustrates the use of terrestrial laser scanning (TLS) and photogrammetry using a process known as structure from motion (SFM) to acquire point clouds and illustrates the use of these point clouds in evaluating road roughness. Five roadway sections were chosen for scanning and testing: three gravel road sections, one portland cement concrete (PCC) section, and one asphalt concrete (AC) section. To compare clouds obtained from terrestrial laser scanning and photogrammetry, the coordinates of the clouds for the same section on the same date were matched using open source computer code. The research indicates that the technologies described are very promising for evaluating road roughness. The major advantage of both technologies is the large amount of data collected, which allows the evaluation of the full surface. Additional research is needed to further develop the use of dense 3D point clouds for roadway assessment.
Resumo:
Abstract
Resumo:
Paperin pinnan karheus on yksi paperin laatukriteereistä. Sitä mitataan fyysisestipaperin pintaa mittaavien laitteiden ja optisten laitteiden avulla. Mittaukset vaativat laboratorioolosuhteita, mutta nopeammille, suoraan linjalla tapahtuville mittauksilla olisi tarvetta paperiteollisuudessa. Paperin pinnan karheus voidaan ilmaista yhtenä näytteelle kohdistuvana karheusarvona. Tässä työssä näyte on jaettu merkitseviin alueisiin, ja jokaiselle alueelle on laskettu erillinen karheusarvo. Karheuden mittaukseen on käytetty useita menetelmiä. Yleisesti hyväksyttyä tilastollista menetelmää on käytetty tässä työssä etäisyysmuunnoksen lisäksi. Paperin pinnan karheudenmittauksessa on ollut tarvetta jakaa analysoitava näyte karheuden perusteella alueisiin. Aluejaon avulla voidaan rajata näytteestä selvästi karheampana esiintyvät alueet. Etäisyysmuunnos tuottaa alueita, joita on analysoitu. Näistä alueista on muodostettu yhtenäisiä alueita erilaisilla segmentointimenetelmillä. PNN -menetelmään (Pairwise Nearest Neighbor) ja naapurialueiden yhdistämiseen perustuvia algoritmeja on käytetty.Alueiden jakamiseen ja yhdistämiseen perustuvaa lähestymistapaa on myös tarkasteltu. Segmentoitujen kuvien validointi on yleensä tapahtunut ihmisen tarkastelemana. Tämän työn lähestymistapa on verrata yleisesti hyväksyttyä tilastollista menetelmää segmentoinnin tuloksiin. Korkea korrelaatio näiden tulosten välillä osoittaa onnistunutta segmentointia. Eri kokeiden tuloksia on verrattu keskenään hypoteesin testauksella. Työssä on analysoitu kahta näytesarjaa, joidenmittaukset on suoritettu OptiTopolla ja profilometrillä. Etäisyysmuunnoksen aloitusparametrit, joita muutettiin kokeiden aikana, olivat aloituspisteiden määrä ja sijainti. Samat parametrimuutokset tehtiin kaikille algoritmeille, joita käytettiin alueiden yhdistämiseen. Etäisyysmuunnoksen jälkeen korrelaatio oli voimakkaampaa profilometrillä mitatuille näytteille kuin OptiTopolla mitatuille näytteille. Segmentoiduilla OptiTopo -näytteillä korrelaatio parantui voimakkaammin kuin profilometrinäytteillä. PNN -menetelmän tuottamilla tuloksilla korrelaatio oli paras.