383 resultados para ontogeny


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.For air-breathing animals in aquatic environments, foraging behaviours are often constrained by physiological capability. The development of oxygen stores and the rate at which these stores are used determine juvenile diving and foraging potential.
2. We examined the ontogeny of dive physiology in the threatened Australian sea lion Neophoca cinerea. Australian sea lions exploit benthic habitats; adult females demonstrate high field metabolic rates (FMR), maximize time spent near the benthos, and regularly exceed their calculated aerobic dive limit (cADL). Given larger animals have disproportionately greater diving capabilities; we wanted to determine the extent physiological development constrained diving and foraging in young sea lions.
3. Ten different mother/pup pairs were measured at three developmental stages (6, 15 and 23 months) at Seal Bay Conservation Park, Kangaroo Island, South Australia. Hematocrit (Hct), haemoglobin (Hb) and plasma volume were analyzed to calculate blood O2 stores and myoglobin was measured to determine muscle O2. Additionally, FMR's for nine of the juveniles were derived from doubly-labelled water measurements.
4. Australian sea lions have the slowest documented O2 store development among diving mammals. Although weaning typically occurs by 17·6 months, 23-month juveniles had only developed 68% of adult blood O2. Muscle O2 was the slowest to develop and was 60% of adult values at 23 months.
5. We divided available O2 stores (37·11 ± 1·49 mL O2 kg−1) by at-sea FMR (15·78 ± 1·29 mL O2 min−1 kg−1) to determine a cADL of 2·33 ± 0·24 min for juvenile Australian sea lions. Like adults, young sea lions regularly exceeded cADL's with 67·8 ± 2·8% of dives over theoretical limits and a mean dive duration to cADL ratio of 1·23 ± 0·10.
6. Both dive depth and duration appear impacted by the slow development of oxygen stores. For species that operate close to, or indeed above their estimated physiological maximum, the capacity to increase dive depth, duration or foraging effort would be limited. Due to reduced access to benthic habitat and restricted behavioural options, young benthic foragers, such as Australian sea lions, would be particularly vulnerable to resource limitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study tracked the movements of Australian sea lion (Neophoca cinerea) pups, juveniles, and adult females to identify home ranges and determine if young sea lions accompanied their mothers at sea. Satellite tags were deployed on nine 15- mo-old pups, nine 23-mo-old juveniles, and twenty-nine adult female Australian sea lions at Seal Bay Conservation Park, Kangaroo Island, South Australia. Females did not travel with their offspring at sea, suggesting young Australian sea lions learn foraging behaviors independently. Although home ranges increased with age,  23-mo-old juveniles had not developed adult movement capacity and their range was only 40.6% of the adult range. Juveniles traveled shorter distances (34.8 ± 5.5 km) at slower speeds (2.0 ± 0.3 km/h) than adults (67.9 ± 3.5 km and 3.9 ± 0.3 km/h). Young sea lions also stayed in shallower waters; sea floor depths of mean locations were 48±7m for juveniles and 74±2m for females. Restricted to shallow coastal waters, pups and juveniles are more likely to be disproportionately impacted by human activities. With limited available foraging habitat, young Australian sea lions appear particularly vulnerable to environmental alterations resulting from fisheries or climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre- and post-weaning functional demands on body size and shape of mammals are often in conflict, especially in species where weaning involves a change of habitat. Compared with long lactations, brief lactations are expected to be associated with fast rates of development and attainment of adult traits. We describe allometry and growth for several morphological traits in two closely related fur seal species with large differences in lactation duration at a sympatric site. Longitudinal data were collected from Antarctic (Arctocephalus gazella (Peters, 1875); 120 d lactation) and subantarctic (Arctocephalus tropicalis (Gray, 1872); 300 d lactation) fur seals. Body mass was similar in neonates of both species, but A. gazella neonates were longer, less voluminous, and had larger foreflippers. The species were similar in rate of preweaning growth in body mass, but growth rates of linear variables were faster for A. gazella pups. Consequently, neonatal differences in body shape increased over lactation, and A. gazella pups approached adult body shape faster than did A. tropicalis pups. Our results indicate that preweaning growth is associated with significant changes in body shape, involving the acquisition of a longer, more slender body with larger foreflippers in A. gazella. These differences suggest that A. gazella pups are physically more mature at approximately 100 d of age (close to weaning age) than A. tropicalis pups of the same age

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibitory neurons exert control the expression of many aspects of behaviour by regulating the effectiveness of excitatory neural function. By comparison with excitatory neural systems, relatively little is known about the development of inhibitory neurons and the influence which these neurons exert on the development of other neural systems. Two issues which relate to the development of inhibitory neurons are of particular interest. First, a paradox arises when inhibitory neurons are considered in terms of modern models of synaptic development which involve activity-dependent mechanisms of synaptic plasticity. Second, there is some evidence that inhibitory neurotransmitters may act in a special trophic manner during the early development of nervous systems. Investigations of these issues would be greatly facilitated in a neural system in which it was possible to experimentally control aspects of the development of individual pre- and postsynaptic cells. The aim of the results presented in this thesis was to characterise the normal development of one such system: the GABAergic inhibitory system of the Australian freshwater crayfish, Cherax destructor. The ontogeny of the inhibitory neurotransmitter GABA across the embryonic period of 30% to 100% development was investigated using immunohistochemical techniques. GABA-like immunoreactive cells and fibres were first detected in the embryonic brain region. The expression of GABA-like immunoreactivity progressed along a rostro-caudal gradient, with GABA-like immunoreactive cells being detected in the most anterior thoracic ganglia at 45% development and in all ganglia by 65% development. GABA-like immunoreactive fibres were evident in peripheral nerves as early as 55% development and ramified extensively throughout the neuropil of the nervous system by 65% development. By contrast, immunoreactivity to the primary excitatory neurotransmitter, glutamate, was not detected until 60-65% development. Glutamate-like immunoreactivity at 60-65% development was evident only in the form of punctate staining in the midline of the ventral nerve cord. Cell body staining was observed only at 90% development and was restricted to only a few cells on the periphery of the ventral nerve cord. Radio-labelled ligand binding methods and autoradiography were used to study the expression of putative GABA receptors in the Cherax embryos from 30% to 100% development. Specific binding was evident in the earliest embryos studies at 30% development. There was an initial increase in binding from 30% to 40% development, followed by a dramatic drop to almost zero binding at 50-55% development. This was followed by a gradual increase in binding levels with age, reaching a plateau at 85% development. Preliminary pharmacological evaluation of binding indicated that at least three GABA receptor types were expressed during embryonic development. Methods for culturing, dissociated neural tissues explanted form Cherax embryos at 85% development were established. The success of cultures was demonstrated by neurite extension, and neuronal networks in which neurons appeared to form connections with other neurons and with explanted muscle cells after two days in culture. Immunohistochemical studies demonstrated that some explanted neurons expressed GABA-like immunoreactivity within two days of explanting. These studies have provided a comprehensive description of the development of GABAergic neurons and their receptors in Cherax destructor embryos. The very early expression of GABA-like immunoreactivity, coupled with the early onset of specific GABA binding, strongly indicates that the GABAergic neurons are functional and able to exert an effect on other cells during much of the period of nervous system development in crayfish embryos. These results support the hypothesis that inhibitory neurons may play an important role as regulators of the overall process of assembly and maturation of the nervous system and provide a substantial basis for future experimental studies in which the specific action of inhibitory neurons on the development of discrete components of the crayfish nervous system may be investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
A large number of studies in postcopulatory sexual selection use paternity success as a proxy for fertilization success. However, selective mortality during embryonic development can lead to skews in paternity in situations of polyandry and sperm competition. Thus, when assessment of paternity fails to incorporate mortality skews during early ontogeny, this may interfere with correct interpretation of results and subsequent evolutionary inference. In a previous series of in vitro sperm competition experiments with amphibians (Litoria peronii), we showed skewed paternity patterns towards males more genetically similar to the female.

Methodology/Principal Findings
Here we use in vitro fertilizations and sperm competition trials to test if this pattern of paternity of fully developed tadpoles reflects patterns of paternity at fertilization and if paternity skews changes during embryonic development. We show that there is no selective mortality through ontogeny and that patterns of paternity of hatched tadpoles reflects success of competing males in sperm competition at fertilization.

Conclusions/Significance
While this study shows that previous inferences of fertilization success from paternity data are valid for this species, rigorous testing of these assumptions is required to ensure that differential embryonic mortality does not confound estimations of true fertilization success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given limited food, prey fishes in a temperate climate must take risks to acquire sufficient reserves for winter and/or to outgrow vulnerability to predation. However, how can we distinguish which selective pressure promotes risk-taking when larger body size is always beneficial? To address this question, we examined patterns of energy allocation in populations of age-0 trout to determine if greater risk-taking corresponds with energy allocation to lipids or to somatic growth. Trout achieved maximum growth rates in all lakes and allocated nearly all of their acquired energy to somatic growth when small in early summer. However, trout in low-food lakes took greater risks to achieve this maximal growth, and therefore incurred high mortality. By late summer, age-0 trout allocated considerable energy to lipids and used previously risky habitats in all lakes. These results indicate that: (i) the size-dependent risk of predation (which is independent of behaviour) promotes risk-taking behaviour of age-0 trout to increase growth and minimize time spent in vulnerable sizes; and (ii) the physiology of energy allocation and behaviour interact to mediate growth/mortality trade-offs for young animals at risk of predation and starvation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The movements of some long-distance migrants are driven by innate compass headings that they follow on their first migrations (e.g., some birds and insects), while the movements of other first-time migrants are learned by following more experienced conspecifics (e.g., baleen whales). However, the overall roles of innate, learned, and social behaviors in driving migration goals in many taxa are poorly understood. To look for evidence of whether migration routes are innate or learned for sea turtles, here for 42 sites around the world we compare the migration routes of >400 satellite-tracked adults of multiple species of sea turtle with ∼45 000 Lagrangian hatchling turtle drift scenarios. In so doing, we show that the migration routes of adult turtles are strongly related to hatchling drift patterns, implying that adult migration goals are learned through their past experiences dispersing with ocean currents. The diverse migration destinations of adults consistently reflected the diversity in sites they would have encountered as drifting hatchlings. Our findings reveal how a simple mechanism, juvenile passive drift, can explain the ontogeny of some of the longest migrations in the animal kingdom and ensure that adults find suitable foraging sites.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As there is limited knowledge regarding the longitudinal development and early ontogeny of naïve and regulatory CD4(+) T-cell subsets during the first postnatal year, we sought to evaluate the changes in proportion of naïve (thymic and central) and regulatory (resting and activated) CD4(+) T-cell populations during the first postnatal year. Blood samples were collected and analyzed at birth, 6 and 12 months of age from a population-derived sample of 130 infants. The proportion of naïve and regulatory CD4(+) T-cell populations was determined by flow cytometry, and the thymic and central naïve populations were sorted and their phenotype confirmed by relative expression of T cell-receptor excision circle DNA (TREC). At birth, the majority (94%) of CD4(+) T cells were naïve (CD45RA(+)), and of these, ~80% had a thymic naïve phenotype (CD31(+) and high TREC), with the remainder already central naïve cells (CD31(-) and low TREC). During the first year of life, the naïve CD4(+) T cells retained an overall thymic phenotype but decreased steadily. From birth to 6 months of age, the proportion of both resting naïve T regulatory cells (rTreg; CD4(+)CD45RA(+)FoxP3(+)) and activated Treg (aTreg, CD4(+)CD45RA(-)FoxP3(high)) increased markedly. The ratio of thymic to central naïve CD4(+) T cells was lower in males throughout the first postnatal year indicating early sexual dimorphism in immune development. This longitudinal study defines proportions of CD4(+) T-cell populations during the first year of postnatal life that provide a better understanding of normal immune development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caesalpinia echinata and C ferrea var. ferrea have different seed behaviours and seed and fruit types. Comparison of the seed ontogeny and anatomy partly explained the differences in seed behaviour between these two species of Brazilian legumes; some differences were also related to fruit development. The seed coat in C. ferrea consisted of two layers of osteosclereids, as well as macrosclereids and fibres, to form a typical legume seed coat, whereas C. echinata had only macrosclereids and fibres. In C. echinata, the developing seed coat had paracytic stomata, a feature rarely found in legume seeds. These seed coat features may account for the low longevity of C. echinata seeds. The embryogeny was similar in both species, with no differences in the relationship between embryo growth and seed growth. The seeds of both species behaved as typical endospermic seeds, despite their different morphological classification (exendospermic orthodox seeds were described for C. echinata and endospermic orthodox seeds for C. ferrea). Embryo growth in C. ferrea accelerated when the sclerenchyma of the pericarp was developing, whereas embryonic growth in C. echinata was associated with the conclusion of spine and secretory reservoir development in the pericarp. Other features observed included an endothelial layer that secreted mucilage in both species, a nucellar summit, which grew up into the micropyle, and a placental obturator that connected the ovarian tissue to the ovule in C. ferrea. (C) 2004 the Linnean Society of London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)