931 resultados para offset implant placement
Resumo:
AIM: To assess dimensional ridge alterations following immediate implant placement in molar extraction sites. MATERIAL AND METHODS: Twelve subjects received 12 immediate transmucosal implants in molar extraction sites. Peri-implant defects were treated according to the principles of Guided Bone Regeneration by means of a deproteinized bone substitute and a bioresorbable collagen membrane. Changes in vertical (IS-BD, CREST-BD) and horizontal distances (EC-I, IC-I) of alveolar bony walls to the bottom of the defects (BD) and to the implant surfaces (I) were compared between implant placement and surgical re-entry at 6 months. RESULTS: The implant survival rate at 6 months was 100%. Statistically significant differences (P<0.01) were observed in the mean changes in vertical distances IS-BD and CREST-BD between baseline and re-entry. At re-entry, all peri-implant marginal defects assessed from the internal socket wall to the implant surface (IC-I) were healed. The residual combined thickness of the buccal wall with the newly formed peri-implant bone at sites with an initial thickness of 1 mm was statistically significantly smaller (P<0.05) compared with that of sites with an initial buccal thickness of 2 mm (2.50 +/- 0.76 vs. 4+/-0 mm). CONCLUSIONS: The marginal defects around immediate implants placed in molar extraction sites were completely filled after 6 months of healing through de novo bone formation. Bone resorption was observed from the external aspects of the buccal and oral socket walls. Dimensional changes of the external socket walls were mostly pronounced at the buccal aspects.
Resumo:
In this prospective case series study, 20 patients with an implant-borne single crown following early implant placement with simultaneous contour augmentation were followed for 6 years. Clinical, radiologic, and esthetic parameters were assessed. In addition, cone beam computed tomography (CBCT) was used at 6 years to examine the facial bone wall. During the study period, all 20 implants were successfully integrated, and the clinical parameters remained stable over time. Pleasing esthetic outcomes were noted, as assessed by the pink esthetic scores. None of the implants developed mucosal recession of 1 mm or more. The periapical radiographs yielded stable peri-implant bone levels, with a mean DIB of 0.44 mm at 6 years. The CBCT scans showed that all 20 implants had a detectable facial bone wall at 6 years, with a mean thickness of around 1.9 mm. In summary, this prospective case series study demonstrated stable peri-implant hard and soft tissues for all 20 implants, and pleasing esthetic outcomes overall. The follow-up of 6 years confirmed that the risk for mucosal recession is low with early implant placement. In addition, contour augmentation with guided bone regeneration (GBR) was able to establish and maintain a facial bone wall in all 20 patients.
Resumo:
BACKGROUND Early implant placement with simultaneous contour augmentation is documented with short- and medium-term studies. The long-term stability of contour augmentation is uncertain. METHODS In this prospective, cross-sectional study, 41 patients with an implant-borne single crown were examined twice, in 2006 and 2010. Clinical, radiologic, and esthetic parameters were assessed at both examinations. In addition, a cone beam computed tomographic (CBCT) image was obtained during the second examination to assess the dimensions of the facial bone wall. RESULTS All 41 implants demonstrated ankylotic stability without signs of peri-implant infection at both examinations. The clinical parameters remained stable over time. Satisfactory esthetic outcomes were noted, as assessed by the pink and white esthetic score (PES/WES) indices. Overall, the PES scores were slightly higher than the WES scores. None of the implants developed mucosal recession over time, as confirmed by values of the distance between implant shoulder and mucosal margin and cast measurements. The periapical radiographs yielded stable peri-implant bone levels, with a mean distance between implant shoulder and first visible bone-implant contact value of 2.18 mm. The CBCT analysis demonstrated a mean thickness of the facial bone wall ≈2.2 mm. In two implants (4.9%) no facial bone wall was detectable radiographically. CONCLUSIONS This prospective cross-sectional study demonstrates stable peri-implant hard and soft tissues for all 41 implants examined and satisfactory esthetic outcomes overall. The follow-up of 5 to 9 years confirmed again that the risk for mucosal recession is low with early implant placement. In addition, contour augmentation with guided bone regeneration was able to establish and maintain a facial bone wall in 95% of patients.
Resumo:
PURPOSE Extended grafting procedures in atrophic ridges are invasive and time-consuming and increase cost and patient morbidity. Therefore, ridge-splitting techniques have been suggested to enlarge alveolar crests. The aim of this cohort study was to report techniques and radiographic outcomes of implants placed simultaneously with a piezoelectric alveolar ridge-splitting technique (RST). Peri-implant bone-level changes (ΔIBL) of implants placed with (study group, SG) or without RST (control group, CG) were compared. MATERIALS AND METHODS Two cohorts (seven patients in each) were matched regarding implant type, position, and number; superstructure type; age; and gender and received 17 implants each. Crestal implant bone level (IBL) was measured at surgery (T0), loading (T1), and 1 year (T2) and 2 years after loading (T3). For all implants, ΔIBL values were determined from radiographs. Differences in ΔIBL between SG and CG were analyzed statistically (Mann-Whitney U test). Bone width was assessed intraoperatively, and vertical bone mapping was performed at T0, T1, and T3. RESULTS After a mean observation period of 27.4 months after surgery, the implant survival rate was 100%. Mean ΔIBL was -1.68 ± 0.90 mm for SG and -1.04 ± 0.78 mm for CG (P = .022). Increased ΔIBL in SG versus CG occurred mainly until T2. Between T2 and T3, ΔIBL was limited (-0.11 ± 1.20 mm for SG and -0.05 ± 0.16 mm for CG; P = .546). Median bone width increased intraoperatively by 4.7 mm. CONCLUSIONS Within the limitations of this study, it can be suggested that RST is a well-functioning one-stage alternative to extended grafting procedures if the ridge shows adequate height. ΔIBL values indicated that implants with RST may fulfill accepted implant success criteria. However, during healing and the first year of loading, increased IBL alterations must be anticipated.
Resumo:
PURPOSE To investigate the adequacy of potential sites for insertion of orthodontic mini-implants (OMIs) in the anterior alveolar region (delimited by the first premolars) through a systematic review of studies that used computed tomography (CT) or cone beam CT (CBCT) to assess anatomical hard tissue parameters, such as bone thickness, available space, and bone density. MATERIALS AND METHODS MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews were searched to identify all relevant papers published between 1980 and September 2011. An extensive search strategy was performed that included the key words "computerized (computed) tomography" and "mini-implants." Information was extracted from the eligible articles for three anatomical areas: maxillary anterior buccal, maxillary anterior palatal, and mandibular anterior buccal. Quantitative data obtained for each anatomical variable under study were evaluated qualitatively with a scoring system. RESULTS Of the 790 articles identified by the search, 8 were eligible to be included in the study. The most favorable area for OMI insertion in the anterior maxilla (buccally and palatally) and mandible is between the canine and the first premolar. The best alternative area in the maxilla (buccally) and the mandible is between the lateral incisor and the canine, while in the maxillary palatal area it is between the central incisors or between the lateral incisor and the canine. CONCLUSIONS Although there is considerable heterogeneity among studies, there is a good level of agreement regarding the optimal site for OMI placement in the anterior region among investigations of anatomical hard tissue parameters based on CT or CBCT scans. In this context, the area between the lateral incisor and the first premolar is the most favorable. However, interroot distance seems to be a critical factor that should be evaluated carefully.
Resumo:
OBJECTIVE To evaluate the suitability of a minipig model for the study of bone healing and osseointegration of dental implants following bone splitting and expansion of narrow ridges. MATERIAL AND METHODS In four minipigs, the mandibular premolars and first molars were extracted together with removal of the buccal bone plate. Three months later, ridge splitting and expansion was performed with simultaneous placement of three titanium implants per quadrant. On one side of the mandible, the expanded bone gap between the implants was filled with an alloplastic biphasic calcium phosphate (BCP) material, while the gap on the other side was left unfilled. A barrier membrane was placed in half of the quadrants. After a healing period of 6 weeks, the animals were sacrificed for histological evaluation. RESULTS In all groups, no bone fractures occurred, no implants were lost, all 24 implants were osseointegrated, and the gap created by bone splitting was filled with new bone, irrespective of whether BCP or a barrier membrane was used. Slight exposure of five implants was observed, but did not lead to implant loss. The level of the most coronal bone-to-implant contact varied without being dependent on the use of BCP or a barrier membrane. In all groups, the BCP particles were not present deep in the bone-filled gap. However, BCP particles were seen at the crestal bone margin, where they were partly integrated in the new bone. CONCLUSIONS This new minipig model holds great promise for studying experimental ridge splitting/expansion. However, efforts must be undertaken to reduce implant exposure and buccal bone resorption.
Resumo:
PURPOSE To systematically review clinical studies examining the survival and success rates of implants in horizontal ridge augmentation, either prior to or in conjunction with implant placement in the anterior maxilla. MATERIALS AND METHODS A literature search was undertaken up to September 2012 including clinical studies in English with ≥ 10 consecutively treated patients and a mean follow-up of at least 12 months. Two reviewers screened the pertinent articles and extracted the data. Key words focused on the outcome parameters (implant success, implant survival, horizontal bone gain, and intra- and postoperative complications) in studies utilizing either a simultaneous approach (ridge augmentation performed at the time of implant placement) or a staged approach (ridge augmentation performed prior to implant placement) were analyzed. RESULTS A total of 13 studies met the inclusion criteria, with 2 studies in the simultaneous group and 11 studies in the staged group. In the simultaneous group, survival rates of implants were 100% in both studies, with one study also reporting a 100% implant success rate. No data on horizontal bone gain were available. In the staged group, success rates of implants placed in horizontally augmented ridges ranged from 96.8% to 100% (two studies), and survival rates ranged from 93.5% to 100% (five studies). However, follow-up periods differed widely (up to 4.1 years). Mean horizontal bone gain determined at reentry (implant placement) ranged from 3.4 to 5.0 mm with large overall variations (0 to 9.8 mm, five studies). Intraoperative complications were not reported. Postsurgical complications included mainly mucosal dehiscences (five studies), and, occasionally, complete failures of block grafts were described in one study. CONCLUSIONS Staged and simultaneous augmentation procedures in the anterior maxilla are both associated with high implant success and survival rates. The level of evidence, however, is better for the staged approach than for the simultaneous one.
Resumo:
PURPOSE The objectives of this systematic review are (1) to quantitatively estimate the esthetic outcomes of implants placed in postextraction sites, and (2) to evaluate the influence of simultaneous bone augmentation procedures on these outcomes. MATERIALS AND METHODS Electronic and manual searches of the dental literature were performed to collect information on esthetic outcomes based on objective criteria with implants placed after extraction of maxillary anterior and premolar teeth. All levels of evidence were accepted (case series studies required a minimum of 5 cases). RESULTS From 1,686 titles, 114 full-text articles were evaluated and 50 records included for data extraction. The included studies reported on single-tooth implants adjacent to natural teeth, with no studies on multiple missing teeth identified (6 randomized controlled trials, 6 cohort studies, 5 cross-sectional studies, and 33 case series studies). Considerable heterogeneity in study design was found. A meta-analysis of controlled studies was not possible. The available evidence suggests that esthetic outcomes, determined by esthetic indices (predominantly the pink esthetic score) and positional changes of the peri-implant mucosa, may be achieved for single-tooth implants placed after tooth extraction. Immediate (type 1) implant placement, however, is associated with a greater variability in outcomes and a higher frequency of recession of > 1 mm of the midfacial mucosa (eight studies; range 9% to 41% and median 26% of sites, 1 to 3 years after placement) compared to early (type 2 and type 3) implant placement (2 studies; no sites with recession > 1 mm). In two retrospective studies of immediate (type 1) implant placement with bone graft, the facial bone wall was not detectable on cone beam CT in 36% and 57% of sites. These sites had more recession of the midfacial mucosa compared to sites with detectable facial bone. Two studies of early implant placement (types 2 and 3) combined with simultaneous bone augmentation with GBR (contour augmentation) demonstrated a high frequency (above 90%) of facial bone wall visible on CBCT. Recent studies of immediate (type 1) placement imposed specific selection criteria, including thick tissue biotype and an intact facial socket wall, to reduce esthetic risk. There were no specific selection criteria for early (type 2 and type 3) implant placement. CONCLUSIONS Acceptable esthetic outcomes may be achieved with implants placed after extraction of teeth in the maxillary anterior and premolar areas of the dentition. Recession of the midfacial mucosa is a risk with immediate (type 1) placement. Further research is needed to investigate the most suitable biomaterials to reconstruct the facial bone and the relationship between long-term mucosal stability and presence/absence of the facial bone, the thickness of the facial bone, and the position of the facial bone crest.
Resumo:
Owing to its single surgical intervention, immediate implant placement has the advantage of shortening treatment time, and thus positively affects patient morbidity. According to the bone resorption pattern after tooth extraction, bone loss should be anticipated if immediate implant placement is considered. The present case report aims to present a possible treatment option and to demonstrate that a partially edentulous arch may be rehabilitated esthetically by immediate implant placement and by corresponding anticipatory measures.
Resumo:
Placement of a single-tooth implant should be performed when a patient's facial growth has ceased. In this retrospective observational study, we evaluated if there was a difference in the timing of cessation of craniofacial growth in short, average, and long facial types. Based on the value of the angle between cranial base and mandibular plane (SN/MP angle), three groups comprising 48 subjects with short facial type (SF; SN/MP ≤28°), 77 with average facial type (AF; SN/MP ≥31.5° and ≤34.5°), and 44 with long facial type (LF; SN/MP ≥38°) were selected. Facial growth was assessed on lateral cephalograms taken at 15.4 years of age, and 2, 5, and 10 years later. Variables were considered to be stable when the difference between two successive measurements was less than 1 mm or 1°. We found no difference between facial types in the timing of cessation of facial growth. Depending on the variable, the mean age when variables became stable ranged from 18.0 years (Is-Pal in LF group) to 22.0 years (SN/MP in LF group). However, facial growth continued at the last follow-up in approximately 20% subjects. This study demonstrates that facial type is not associated with the timing of cessation of facial growth.
Resumo:
OBJECTIVES To systematically review the available literature on the influence of dental implant placement and loading protocols on peri-implant innervation. MATERIAL AND METHODS The database MEDLINE, Cochrane, EMBASE, Web of Science, LILACS, OpenGrey and hand searching were used to identify the studies published up to July 2013, with a populations, exposures and outcomes (PEO) search strategy using MeSH keywords, focusing on the question: Is there, and if so, what is the effect of time between tooth extraction and implant placement or implant loading on neural fibre content in the peri-implant hard and soft tissues? RESULTS Of 683 titles retrieved based on the standardized search strategy, only 10 articles fulfilled the inclusion criteria, five evaluating the innervation of peri-implant epithelium, five elucidating the sensory function in peri-implant bone. Three included studies were considered having a methodology of medium quality and the rest were at low quality. All those papers reported a sensory innervation around osseointegrated implants, either in the bone-implant interface or peri-implant epithelium, which expressed a particular innervation pattern. Compared to unloaded implants or extraction sites without implantation, a significant higher density of nerve fibres around loaded dental implants was confirmed. CONCLUSIONS To date, the published literature describes peri-implant innervation with a distinct pattern in hard and soft tissues. Implant loading seems to increase the density of nerve fibres in peri-implant tissues, with insufficient evidence to distinguish between the innervation patterns following immediate and delayed implant placement and loading protocols. Variability in study design and loading protocols across the literature and a high risk of bias in the studies included may contribute to this inconsistency, revealing the need for more uniformity in reporting, randomized controlled trials, longer observation periods and standardization of protocols.
Resumo:
AIM To associate the dimension of the facial bone wall with clinical, radiological, and patient-centered outcomes at least 10 years after immediate implant placement with simultaneous guided bone regeneration in a retrospective study. MATERIAL AND METHODS Primary endpoint was the distance from the implant shoulder (IS) to the first bone-to-implant contact (IS-BIC10y ). Secondary endpoints included the facial bone thickness (BT10y ) 2, 4, and 6 mm apical to the IS, and the implant position. At baseline, the horizontal defect width (HDWBL ) from the implant surface to the alveolar wall was recorded. At recall, distance from the IS to the mucosal margin (IS-MM10y ), degree of soft tissue coverage of the mesial and distal aspects of the implants (PISm10y , PISd10y ; Papilla Index), pocket probing depth (PPD10y ), and patient-centered outcomes were determined. Width of the keratinized mucosa (KM), Full-Mouth Plaque and Bleeding Score (FMPS, FMBS) were available for both time points. RESULTS Of the 20 patients who underwent immediate implant placement with simultaneous guided bone regeneration and transmucosal healing, nine males and eight females with a median age of 62 years (42 min, 84 max) were followed up for a median period of 10.5 y (min 10.1 max 11.5). The 10-year implant survival rate was 100%. Multivariate regression analysis revealed a correlation of the IS-BIC10y , controlled for age and gender, with four parameters: HDWBL (P = 0.03), KMBL -10 (P = 0.02), BT10 4 mm (P = 0.01), and BT10 6 mm (P = 0.01). CONCLUSION Within the conditions of the present study, the horizontal defect width was the main indicator for the vertical dimension of the facial bone. The facial bone dimension was further associated with a reduction in the width of the keratinized mucosa and the dimension of the buccal bone.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)