958 resultados para off-road vehicles (ORVs)
Resumo:
Whole-body vibration exposure of locomotive engineers and the vibration attenuation of seats in 22 U.S. locomotives (built between 1959 and 2000) was studied during normal revenue service and following international measurement guidelines. Triaxial vibration measurements (duration mean 155 min, range 84-383 min) on the seat and on the floor were compared. In addition to the basic vibration evaluation (aw rms), the vector sum (av), the maximum transient vibration value (MTVV/aw), the vibration dose value (VDV/(aw T1/4)), and the vibration seat effective transmissibility factor (SEAT) were calculated. The power spectral densities are also reported. The mean basic vibration level (aw rms) was for the fore-aft axis x = 0.18 m/sec2, the lateral axis y = 0.28 m/sec2, and the vertical axis z = 0.32 m/sec2. The mean vector sum was 0.59 m/sec2 (range 0.27 to 1.44). The crest factors were generally at or above 9 in the horizontal and vertical axis. The mean MTVV/aw was 5.3 (x), 5.1 (y), and 4.8 (z), and the VDV/(aw T1/4) values ranged from 1.32 to 2.3 (x-axis), 1.33 to 1.7 (y-axis), and 1.38 to 1.86 (z-axis), generally indicating high levels of shocks. The mean seat transmissibility factor (SEAT) was 1.4 (x) and 1.2 (y) and 1 (z), demonstrating a general ineffectiveness of any of the seat suspension systems. In conclusion, these data indicate that locomotive rides are characterized by relatively high shock content (acceleration peaks) of the vibration signal in all directions. Locomotive vertical and lateral vibrations are similar, which appears to be characteristic for rail vehicles compared with many road/off-road vehicles. Tested locomotive cab seats currently in use (new or old) appear inadequate to reduce potentially harmful vibration and shocks transmitted to the seated operator, and older seats particularly lack basic ergonomic features regarding adjustability and postural support.
Resumo:
El LPF_TAGRALIA es un grupo de investigación reconocido de la UPM que trabaja en diversos ámbitos de la Ingeniería Agroforestal y de Biosistemas, entre los que se encuentra el análisis de emisiones de vehículos agrícolas, y el análisis de la calidad y la eficiencia energética en el transporte a larga distancia de productos perecederos, colaborando asimismo con una variedad de grupos y centros de investigación nacionales e internacionales. El primero de estos temas: análisis de emisiones de vehículos agrícolas, es objeto de estudio en el LPF_TAGRALIA desde hace aproximadamente diez años, cuando se materializa y cobra relevancia la aplicación del standard TIER de la agencia de protección ambiental americana (EPA) cuyo disparo de salida tuvo lugar en 1996 con la publicación del TIER I. La adopción en USA y Europa de este standard que regula las emisiones de CO, óxidos de Nitrógeno y 2 partículas de materia de diversa naturaleza (PM) se está produciendo de manera paulatina en función de la potencia de matriculación de los tractores (vehículos de fuera de carretera, off-road vehicles). En la actualidad el standard TIER IV ha de ser verificado mayoritariamente por los tractores, para lo cuál existen dos estrategias básicas: la recirculación de gases de escape (EGR), y la reducción catalítica selectiva (SCR). La verificación del funcionamiento en campo de estas estrategias ha sido materia de análisis y discusión por parte del LPF_TAGRALIA que ejerce desde hace 4 años la labor de Responsable de Ensayos de Campo para el suplemento Maq-Vida Rural, una de las publicaciones más reconocidas por los técnicos que desarrollan su labor en el ámbito de la Ingeniería Rural; los diversos documentos relacionados pueden consultarse en el servicio de acceso abierto también denominado Archivo Digital de la UPM (http://oa.upm.es/).
Resumo:
The Iowa Statewide Recreational Trails Plan was developed in response to the State Legislature's recognition of the increased public demand for quality outdoor recreational facilities and the numerous benefits associated with the development and usage of trail systems. The plan presents a statewide trails system that will serve as a basis for trail planning efforts throughout the state. Included are design guidelines for each of the major trail modes contained within the plan including bike, hiking, cross-country skiing, snowmobiling, off-road vehicles, and equestrian, as well as for locating trails within the highway right-of-way. Also included are estimates of implementation costs and financing alternatives. This report contains the complete plan. Separately bound documents include the Executive Summary and two additional appendices: (1) Trails Plan Resource Inventory and (2) Summary of Public Comments and Summary of Technical Advisory Committee Comments.
Resumo:
Mode of access: Internet.
Resumo:
We present a method for calculating odome- try in three-dimensions for car-like ground ve- hicles with an Ackerman-like steering model. In our approach we use the information from a single camera to derive the odometry in the plane and fuse it with roll and pitch informa- tion derived from an on-board IMU to extend to three-dimensions, thus providing odometric altitude as well as traditional x and y transla- tion. We have mounted the odometry module on a standard Toyota Prado SUV and present results from a car-park environment as well as from an off-road track.
Resumo:
Among the intelligent safety technologies for road vehicles, active suspensions controlled by embedded computing elements for preventing rollover have received a lot of attention. The existing models for synthesizing and allocating forces in such suspensions are conservatively based on the constraints that are valid until no wheels lift off the ground. However, the fault tolerance of the rollover-preventive systems can be enhanced if the smart/active suspensions can intervene in the more severe situation in which the wheels have just lifted off the ground. The difficulty in computing control in the last situation is that the vehicle dynamics then passes into the regime that yields a model involving disjunctive constraints on the dynamics. Simulation of dynamics with disjunctive constraints in this context becomes necessary to estimate, synthesize, and allocate the intended hardware realizable forces in an active suspension. In this paper, we give an algorithm for the previously mentioned problem by solving it as a disjunctive dynamic optimization problem. Based on this, we synthesize and allocate the roll-stabilizing time-dependent active suspension forces in terms of sensor output data. We show that the forces obtained from disjunctive dynamics are comparable with existing force allocations and, hence, are possibly realizable in the existing hardware framework toward enhancing the safety and fault tolerance.
Resumo:
Theory is presented for simulating the dynamic wheel forces generated by heavy road vehicles and the resulting dynamic response of road surfaces to these loads. Sample calculations are provided and the vehicle simulation is validated with data from full-scale tests. The methods are used in the accompanying paper to simulate the road damage done by a tandem-axle vehicle.
Resumo:
The fuel consumption is an important factor in the vehicle development due the fact that it has a direct effect on its trade aims. Besides that, it is known that the petrol is a scarce fuel. In this paper it is presented a procedure of fuel consumption calculation for a vehicle traveling in driving schedule. In such calculation it has been taken into account the operational conditions (load, pavement, climbing road, among others) and the building characteristics (map engine, transmission, frontal area, tire, among others) of road vehicles. There has also been an application of the theoretical model developed in a sample Mercedes-Benz do Brasil vehicle which has been compared with the values of experimental tests. Copyright © 1997 Society of Automotive Engineers, Inc.
Resumo:
Because of the high number of crashes occurring on highways, it is necessary to intensify the search for new tools that help in understanding their causes. This research explores the use of a geographic information system (GIS) for an integrated analysis, taking into account two accident-related factors: design consistency (DC) (based on vehicle speed) and available sight distance (ASD) (based on visibility). Both factors require specific GIS software add-ins, which are explained. Digital terrain models (DTMs), vehicle paths, road centerlines, a speed prediction model, and crash data are integrated in the GIS. The usefulness of this approach has been assessed through a study of more than 500 crashes. From a regularly spaced grid, the terrain (bare ground) has been modeled through a triangulated irregular network (TIN). The length of the roads analyzed is greater than 100 km. Results have shown that DC and ASD could be related to crashes in approximately 4% of cases. In order to illustrate the potential of GIS, two crashes are fully analyzed: a car rollover after running off road on the right side and a rear-end collision of two moving vehicles. Although this procedure uses two software add-ins that are available only for ArcGIS, the study gives a practical demonstration of the suitability of GIS for conducting integrated studies of road safety.
Resumo:
Mode of access: Internet.
Resumo:
• Introduction: Concern and action for rural road safety is relatively new in Australia in comparison to the field of traffic safety as a whole. In 2003, a program of research was begun by the Centre for Accident Research and Road Safety - Queensland (CARRS-Q) and the Rural Health Research Unit (RHRU) at James Cook University to investigate factors contributing to serious rural road crashes in the North Queensland region. This project was funded by the Premier’s Department, Main Roads Department, Queensland Transport, QFleet, Queensland Rail, Queensland Ambulance Service, Department of Natural Resources and Queensland Police Service. Additional funding was provided by NRMA Insurance for a PhD scholarship. In-kind support was provided through the four hospitals used for data collection, namely Cairns Base Hospital, The Townsville Hospital, Mount Isa Hospital and Atherton Hospital.----- The primary aim of the project was to: Identify human factors related to the occurrence of serious traffic incidents in rural and remote areas of Australia, and to the trauma suffered by persons as a result of these incidents, using a sample drawn from a rural and remote area in North Queensland.----- The data and analyses presented in this report are the core findings from two broad studies: a general examination of fatalities and casualties from rural and remote crashes for the period 1 March 2004 until 30 June 2007, and a further linked case-comparison study of hospitalised patients compared with a sample of non-crash-involved drivers.----- • Method: The study was undertaken in rural North Queensland, as defined by the Australian Bureau of Statistics (ABS) statistical divisions of North Queensland, Far North Queensland and North-West Queensland. Urban areas surrounding Townsville, Thuringowa and Cairns were not included. The study methodology was centred on serious crashes, as defined by a resulting hospitalisation for 24 hours or more and/or a fatality. Crashes meeting this criteria within the North Queensland region between 1 March 2004 and 30 June 2007 were identified through hospital records and interviewed where possible. Additional data was sourced from coroner’s reports, the Queensland Transport road crash database, the Queensland Ambulance Service and the study hospitals in the region.----- This report is divided into chapters corresponding to analyses conducted on the collected crash and casualty data.----- Chapter 3 presents an overview of all crashes and casualties identified during the study period. Details are presented in regard to the demographics and road user types of casualties; the locations, times, types, and circumstances of crashes; along with the contributing circumstances of crashes.----- Chapter 4 presents the results of summary statistics for all casualties for which an interview was able to be conducted. Statistics are presented separately for drivers and riders, passengers, pedestrians and cyclists. Details are also presented separately for drivers and riders crashing in off-road and on-road settings. Results from questionnaire data are presented in relation to demographics; the experience of the crash in narrative form; vehicle characteristics and maintenance; trip characteristics (e.g. purpose and length of journey; periods of fatigue and monotony; distractions from driving task); driving history; alcohol and drug use; medical history; driving attitudes, intentions and behaviour; attitudes to enforcement; and experience of road safety advertising.----- Chapter 5 compares the above-listed questionnaire results between on-road crash-involved casualties and interviews conducted in the region with non-crash-involved persons. Direct comparisons as well as age and sex adjusted comparisons are presented.----- Chapter 6 presents information on those casualties who were admitted to one of the study hospitals during the study period. Brief information is given regarding the demographic characteristics of these casualties. Emergency services’ data is used to highlight the characteristics of patient retrieval and transport to and between hospitals. The major injuries resulting from the crashes are presented for each region of the body and analysed by vehicle type, occupant type, seatbelt status, helmet status, alcohol involvement and nature of crash. Estimates are provided of the costs associated with in-hospital treatment and retrieval.----- Chapter 7 describes the characteristics of the fatal casualties and the nature and circumstances of the crashes. Demographics, road user types, licence status, crash type and contributing factors for crashes are presented. Coronial data is provided in regard to contributing circumstances (including alcohol, drugs and medical conditions), cause of death, resulting injuries, and restraint and helmet use.----- Chapter 8 presents the results of a comparison between casualties’ crash descriptions and police-attributed crash circumstances. The relative frequency of contributing circumstances are compared both broadly within the categories of behavioural, environmental, vehicle related, medical and other groupings and specifically for circumstances within these groups.----- Chapter 9 reports on the associated research projects which have been undertaken on specific topics related to rural road safety.----- Finally, Chapter 10 reports on the conclusions and recommendations made from the program of research.---- • Major Recommendations : From the findings of these analyses, a number of major recommendations were made: + Male drivers and riders - Male drivers and riders should continue to be the focus of interventions, given their very high representation among rural and remote road crash fatalities and serious injuries.----- - The group of males aged between 30 and 50 years comprised the largest number of casualties and must also be targeted for change if there is to be a meaningful improvement in rural and remote road safety.----- + Motorcyclists - Single vehicle motorcycle crashes constitute over 80% of serious, on-road rural motorcycle crashes and need particular attention in development of policy and infrastructure.----- - The motorcycle safety consultation process currently being undertaken by Queensland Transport (via the "Motorbike Safety in Queensland - Consultation Paper") is strongly endorsed. As part of this process, particular attention needs to be given to initiatives designed to reduce rural and single vehicle motorcycle crashes.----- - The safety of off-road riders is a serious problem that falls outside the direct responsibility of either Transport or Health departments. Responsibility for this issue needs to be attributed to develop appropriate policy, regulations and countermeasures.----- + Road safety for Indigenous people - Continued resourcing and expansion of The Queensland Aboriginal Peoples and Torres Strait Islander Peoples Driver Licensing Program to meet the needs of remote and Indigenous communities with significantly lower licence ownership levels.----- - Increased attention needs to focus on the contribution of geographic disadvantage (remoteness) factors to remote and Indigenous road trauma.----- + Road environment - Speed is the ‘final common pathway’ in determining the severity of rural and remote crashes and rural speed limits should be reduced to 90km/hr for sealed off-highway roads and 80km/hr for all unsealed roads as recommended in the Austroads review and in line with the current Tasmanian government trial.----- - The Department of Main Roads should monitor rural crash clusters and where appropriate work with local authorities to conduct relevant audits and take mitigating action. - The international experts at the workshop reviewed the data and identified the need to focus particular attention on road design management for dangerous curves. They also indicated the need to maximise the use of audio-tactile linemarking (audible lines) and rumble strips to alert drivers to dangerous conditions and behaviours.----- + Trauma costs - In accordance with Queensland Health priorities, recognition should be given to the substantial financial costs associated with acute management of trauma resulting from serious rural and remote crashes.----- - Efforts should be made to develop a comprehensive, regionally specific costing formula for road trauma that incorporates the pre-hospital, hospital and post-hospital phases of care. This would inform health resource allocation and facilitate the evaluation of interventions.----- - The commitment of funds to the development of preventive strategies to reduce rural and remote crashes should take into account the potential cost savings associated with trauma.----- - A dedicated study of the rehabilitation needs and associated personal and healthcare costs arising from rural and remote road crashes should be undertaken.----- + Emergency services - While the study has demonstrated considerable efficiency in the response and retrieval systems of rural and remote North Queensland, relevant Intelligent Transport Systems technologies (such as vehicle alarm systems) to improve crash notification should be both developed and evaluated.----- + Enforcement - Alcohol and speed enforcement programs should target the period between 2 and 6pm because of the high numbers of crashes in the afternoon period throughout the rural region.----- + Drink driving - Courtesy buses should be advocated and schemes such as the Skipper project promoted as local drink driving countermeasures in line with the very high levels of community support for these measures identified in the hospital study.------ - Programs should be developed to target the high levels of alcohol consumption identified in rural and remote areas and related involvement in crashes.----- - Referrals to drink driving rehabilitation programs should be mandated for recidivist offenders.----- + Data requirements - Rural and remote road crashes should receive the same quality of attention as urban crashes. As such, it is strongly recommended that increased resources be committed to enable dedicated Forensic Crash Units to investigate rural and remote fatal and serious injury crashes.----- - Transport department records of rural and remote crashes should record the crash location using the national ARIA area classifications used by health departments as a means to better identifying rural crashes.----- - Rural and remote crashes tend to be unnoticed except in relatively infrequent rural reviews. They should receive the same level of attention and this could be achieved if fatalities and fatal crashes were coded by the ARIA classification system and included in regular crash reporting.----- - Health, Transport and Police agencies should collect a common, minimal set of data relating to road crashes and injuries, including presentations to small rural and remote health facilities.----- + Media and community education programmes - Interventions seeking to highlight the human contribution to crashes should be prioritised. Driver distraction, alcohol and inappropriate speed for the road conditions are key examples of such behaviours.----- - Promotion of basic safety behaviours such as the use of seatbelts and helmets should be given a renewed focus.----- - Knowledge, attitude and behavioural factors that have been identified for the hospital Brief Intervention Trial should be considered in developing safety campaigns for rural and remote people. For example challenging the myth of the dangerous ‘other’ or ‘non-local’ driver.----- - Special educational initiatives on the issues involved in rural and remote driving should be undertaken. For example the material used by Main Roads, the Australian Defence Force and local initiatives.
Resumo:
Cooperative collision warning system for road vehicles, enabled by recent advances in positioning systems and wireless communication technologies, can potentially reduce traffic accident significantly. To improve the system, we propose a graph model to represent interactions between multiple road vehicles in a specific region and at a specific time. Given a list of vehicles in vicinity, we can generate the interaction graph using several rules that consider vehicle's properties such as position, speed, heading, etc. Safety applications can use the model to improve emergency warning accuracy and optimize wireless channel usage. The model allows us to develop some congestion control strategies for an efficient multi-hop broadcast protocol.
Resumo:
This paper presents a technique for tracking road edges in a panoramic image sequence. The major contribution is that instead of unwarping the image to find parallel lines representing the road edges, we choose to warp the parallel groundplane lines into the image plane of the equiangular panospheric camera. Updating the parameters of the line thus involves searching a very small number of pixels in the panoramic image, requiring considerably less computation than unwarping. Results using real-world images, including shadows, intersections and curves, are presented.
Resumo:
For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.
Resumo:
As one of the measures for decreasing road traffic noise in a city, the control of the traffic flow and the physical distribution is considered. To conduct the measure effectively, the model for predicting the traffic flow in the citywide road network is necessary. In this study, the existing model named AVENUE was used as a traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model and the sound propagation model, and the new road traffic noise prediction model was established. As a case study, the prediction model was applied to the road network of Tsukuba city in Japan and the noise map of the city was made. To examine the calculation accuracy of the noise map, the calculated values of the noise at the main roads were compared with the measured values. As a result, it was found that there was a possibility that the high accuracy noise map of the city could be made by using the noise prediction model developed in this study.