310 resultados para oedème cérébral
Resumo:
Prognosis after severe traumatic brain injury (TBI) is determined by the severity of initial injury and secondary cerebral damage. The main determinants of secondary cerebral damage are brain ischemia and oedema. Traumatic brain injury is a heterogeneous disease. Head CT-scan is essential in evaluating initial type of injury and severity of brain oedema. A standardised approach based on prevention and treatment of secondary cerebral damage is the only effective therapeutic strategy of severe TBI. We review the classification, pathophysiology and treatment of secondary cerebral damage after severe TBI and discuss the management of intracranial hypertension, cerebral perfusion pressure and brain ischemia.
Resumo:
Contexte : La stimulation du nerf vague est une technique neurochirurgicale qui consiste en l'implantation d'une électrode envoyant des impulsions autours de celui-ci. Depuis l'approbation de la FDA en 1997 aux Etats-Unis, elle est utilisée chez certains patients épileptiques pharmaco-résistants et dont la chirurgie classique n'est pas envisageable [1], Par exemple lorsque qu'aucun foyer épileptique n'est identifiable, qu'une zone éloquente du cortex est atteinte ou encore qu'il y a de multiples points de départ. On parle généralement de patient « répondeur » lorsqu'une diminution de plus de 50% des crises est observée après l'opération. La proportion de patients répondeurs est estimée entre 20 à 50% [2], avec une action positive sur l'éveil [3]. Le mécanisme d'action de cette thérapie reste largement inconnu même si quelques ébauches d'hypothèses ont été formulées, notamment une action inhibitrice sur le noyau solitaire du nerf vague qui pourrait avoir comme effet de moduler des projections ascendantes diffuses via le locus coeruleus [3, 4]. Objectifs : Le but de ce travail est d'observer les effets de la stimulation du nerf vague sur le métabolisme cérébral et potentiellement d'élaborer des hypothèses sur le mécanisme d'action de ce traitement. Il faudra plus précisément s'intéresser au tronc cérébral, contenant le locus coeruleus (métabolisme de la noradrénaline) et aux noyaux du raphé (métabolisme de la sérotonine), deux neurotransmetteurs avec effet antiépileptique [5]. Le but sera également d'établir des facteurs prédictifs sur la façon de répondre d'un patient à partir d'une imagerie cérébrale fonctionnelle avant implantation, notamment au niveau du métabolisme cortical, particulièrement frontal (éveil) sera intéressant à étudier. Méthodes : Un formulaire d'information ainsi que de consentement éclairé sera remis à chaque patient avant inclusion dans l'étude. Les informations de chaque patient seront également inscrites dans un cahier d'observation (Case Report Form, CRF). Le travail s'organisera essentiellement sur deux populations. Premièrement, chez les patients déjà opérés avec un stimulateur en marche, nous réaliserons qu'une imagerie PET au F-18-fluorodeoxyglucose (FDG) post-opératoire qui seront comparés à une base de données de patients normaux (collaboration Dr E. Guedj, AP-HM, La Timone, Marseille). Nous confronterons également les images de ces patients entre elles, en opposant les répondeurs (diminution des crises de ≥50%) aux non-répondeurs. Deuxièmement, les patients non encore opérés auront un examen PET basal avant implantation et 3-6 mois après la mise en marche du stimulateur. Nous évaluerons alors les éventuelles modifications entre ces deux imageries PET, à la recherche de différences entre les répondeurs et non-répondeurs, ainsi que de facteurs prédictifs de bonne réponse dans l'imagerie de base. Toutes les comparaisons d'images seront effectuées grâce avec le programme d'analyse SPM08. Résultats escomptés : Nous espérons pouvoir mettre en évidence des modifications du métabolisme cérébral au FDG sur la base de ces différentes images. Ces constatations pourraient nous permettre de confirmer ou d'élargir les hypothèses physiologiques quant aux effets du traitement par stimulation vagale. Nous aimerions, de plus, amener à définir des facteurs prédictifs sur la façon de répondre d'un patient au traitement à l'aide du PET au F-18-FDG de départ avant implantation. Plus value escomptée : Ces résultats pourront donner des pistes supplémentaires quant au fonctionnement de la stimulation vagale chez les patients avec épilepsie réfractaire et servir de base à de nouvelles recherches dans ce domaine. Ils pourraient aussi donner des éléments pronostics avant l'implantation pour aider la sélection des patients pouvant bénéficier de ce type de thérapie.
Resumo:
Introduction: Le glucose est le principal substrat énergétique cérébral. Sa concentration dans le cerveau est étroitement liée à la glycémie. Chez le patient neurolésé, du fait de l'augmentation des besoins énergétiques, les réserves cérébrales de glucose sont limitées. Une glycémie suffisamment élevée paraît nécessaire pour assurer un apport adéquat de glucose au cerveau. Objectifs : Le but de cette étude est de mieux comprendre la relation entre glucose cérébral et glycémie lors de lésion cérébrale en analysant la physiologie cérébrale chez des patients neurolésés. Plus précisément nous investiguerons: La relation entre le glucose cérébral et le glucose systémique et son association avec le pronostic vital, l'association entre la neuroglucopénie et différents paramètres cérébraux tel que l'hypertension intracrânienne (HTIC) ou la dysfonction énergétique et finalement l'effet d'une perfusion de glucose 10% sur le glucose cérébral lors d'état de neuroglucopénie. Méthodologie : Analyse d'une base de données prospective comportant des patients souffrant d'un traumatisme crânio-cérébral (TCC) ou une hémorragie sous- arachnoïdienne (HSA) sévères. Les patients comateux sont monitorés par un dispositif intra-parenchymateux avancé, comprenant un cathéter de microdialyse cérébrale et un capteur de PbO2. Résultats : 34 patients consécutifs (moyenne d'âge 42 ans, moyenne de temps jusqu'au début du monitoring : 1.5 jours ± 1 ; moyenne de la durée maximale du monitoring : 6 jours ± 3) ont été étudiés, 25 patients souffrant d'un TCC et 9 patients avec une HSA. Nous avons obtenu une corrélation individuelle entre le glucose cérébral et la glycémie chez 52.9 % des patients. Lorsque la glycémie est inférieure à 5 mmol/l, on observe plus fréquemment des épisodes de neuroglucopénie en comparaison aux valeurs intermédiaires de glycémie (5 - 9.9 mmol/l). Les épisodes d'HTIC (pression intracrânienne (PIC) > 20 mmHg) sont plus fréquemment associés à des épisodes de neuroglucopénie que lorsque la pression intracrânienne est normale 75 % vs. 35%. La dysfonction énergétique est plus souvent associés à des épisodes de neuroglucopénie que lorsque le LPR est normal: 55% contre 36%. Un coefficient de corrélation entre glucose cérébral et glycémie significativement plus élevé a été obtenu chez les survivants que chez les non-survivants (0.1 [interquartile range 0.02- 0.3] contre 0.32 [0.17-0.61]). Chez les patients neuroglucopéniques ayant une corrélation entre glucose cérébral et glycémie, la perfusion de glucose i.v. fait monter le glucose cérébral jusqu'à l'arrêt de la perfusion. Conclusion : Malgré une étroite relation entre glycémie et glucose cérébral en conditions stables, cette relation peut être altérée par des causes cérébrales chez les patients neurolésés montrant que la diminution de la disponibilité du glucose extracellulaire ne résulte pas uniquement d'une hypoglycémie relative mais également de causes cérébrales tel que l'hypoperfusion, l'HTIC ou la dysfonction énergétique.
Resumo:
Fondements : La recherche sur l'oedème postopératoire consécutif à la chirurgie prothétique du genou est peu développée, notamment en raison de l'absence d'une méthode de mesure adaptée. Une collaboration entre physiothérapeutes et ingénieurs a permis de développer et valider une méthode de mesure innovante et facilement applicable. Les physiothérapeutes ont identifié un besoin clinique, les ingénieurs ont apporté leur savoir technologique, et l'équipe a conjointement élaboré le protocole de mesure et effectué l'étude de validation. Introduction : La bioimpédance est fréquemment utilisée pour évaluer l'oedème par l'analyse d'un signal électrique passant au travers du corps, en extrapolant la résistance théorique à une fréquence égale à zéro (R0). La mesure s'avère fiable et rapide, mais n'a jamais été appliquée et validée pour l'évaluation de l'oedème en chirurgie orthopédique. Objectif : L'objectif de l'étude est de valider la mesure de l'oedème du membre inférieur par bioimpédance, chez des patients ayant bénéficié d'une prothèse totale de genou (PTG). Questionnement : Après nous être assurés de l'absence d'influence de l'implant métallique de la PTG sur la mesure, nous nous questionnions sur la validité et la fiabilité des mesures de bioimpédance dans ce contexte. Méthodes : Deux évaluateurs ont mesuré à tour de rôle et à deux reprises successives l'oedème chez 24 patients opérés d'une PTG, à trois temps différents (préopératoire, J+2, J+8). L'oedème a été évalué par bioimpédance (R0) et par conversion en volume de mesures centimétriques du membre inférieur (MI). Nous avons calculé le ratio moyen des MI pour chaque méthode. Nous avons évalué la reproductibilité intra- et inter-observateurs de la bioimpédance (coefficient de corrélation intraclasse, CCI) et la corrélation entre méthodes (Spearman). Résultats : Le ratio moyen opéré/sain du volume des MI est de 1.04 (SD ± 0.06) en préopératoire, 1.18 (SD ± 0.09) à J+2 et 1.17 (SD ± 0.10) à J+8. Le ratio sain/opéré des MI de R0 est de 1.04 (SD ± 0.07) en préopératoire, 1.51 (SD ± 0.22) à J+2 et 1.65 (SD ± 0.21) à J+8. En préopératoire, à J+2 et J+8, les CCI tous supérieurs à 0.95 pour la reproductibilité intra- et inter-observateurs de la bioimpédance. La corrélation entre méthodes est de 0.71 en préopératoire, 0.61 à J2 et 0.33 à J8. Analyse et conclusion : La variation du ratio des MI entre les temps préopératoire, J+2 et J+8 est plus marquée pour R0. La mesure de bioimpédance bénéficie d'une excellente reproductibilité intra- et inter-observateurs. L'évolution dans le temps de la corrélation entre méthodes peut être expliquée par l'influence potentielle de facteurs confondants sur R0 (modification de la composition liquidienne) et par l'influence de l'atrophie musculaire postopératoire sur la mesure de volume. La collaboration physiothérapeutes-ingénieurs a permis le développement et l'évaluation d'une nouvelle méthode de mesure.
Resumo:
RESUME Il a longtemps été admis que le glucose était le principal, sinon le seul substrat du métabolisme énergétique cérébral. Néanmoins, des études récentes indiquent que dans des situations particulières, d'autres substrats peuvent être employés. C'est le cas des monocarboxylates (lactate et pyruvate principalement). Bien que la barrière hématoencéphalique soit peu perméable à ces molécules, elles deviennent néanmoins des substrats possibles si elles sont produites localement. Les deux systèmes enzymatiques pivots des voies glycolytiques et oxydatives sont la lactate déshydrogénase (LDH, EC 1.1.1.27) qui catalyse l'interconversion du pyruvate et du lactate et le complexe pyruvate déshydrogénase qui catalyse la conversion irréversible du pyruvate en acétyl-CoA qui entre dans la respiration mitochondriale. Nous avons étudié la localisation, tant régionale que cellulaire, des isoformes LDH-1, LDH-5 et PDHEla dans le cerveau du chat et dé l'homme au moyen de diverses techniques histologiques. Dans un premier temps, des investigations par hybridation in situ au moyen d'oligosondes marquées au 33P sur de coupes de cerveau de chat ont permis de montrer une différence de l'expression des enzymes à vocation oxydative (LDH-1 et PDHA1, le gène codant pour la protéine PDHEIa) par rapport à LDH-5, isoforme qui catalyse préférentiellement la formation de lactate. LDH-1 et PDHA 1 ont des distributions similaires et sont enrichies dans de nombreuses structures cérébrales, comme l'hippocampe, de nombreux noyaux thalamiques et des structures pontiques. Le cortex cérébral exhibe également une expression importante de LDH-1 et PDH. LDH-5 a par contre une expression largement plus diffuse à travers le cerveau, bien que l'on trouve néanmoins un enrichissement plus important dans l'hippocampe. Ces résultats sont en accord avec les observations que nous avons précédemment publiées chez le rongeur pour LDH-1 et LDH-5 (Laughton et collaborateurs, 2000). Des analyses par PCR en temps réel ont confirmé que dans certaines régions, LDH-1 est exprimée de façon nettement plus importante que LDH-5. Dans un deuxième temps, nous avons appliqué sur des coupes histologiques d'hippocampe et de cortex occipital humain post-mortem des anticorps monoclonaux spécifiques de l'isoforme LDH-5 et la sous-unité PDHela du complexe pyruvate déshydrogénase. Là aussi, les immunoréactions révèlent une ségrégation régionale mais aussi cellulaire des deux enzymes. Dans les deux régions étudiées, LDH-5 est localisée exclusivement dans les astrocytes. Dans le cortex occipital, la matière blanche et également la couche I corticale sont immunopositives pour LDH-5. Dans l'hippocampe, le CA4 et l'alveus exhibe l'immunomarquage le plus intense pour LDH-5. Seuls des neurones (à de rares exceptions quelques astrocytes) sont immunopositifs à l'anticorps monoclonal dirigé contre PDHela. La couche IV du cortex occipital présente la plus forte immunoréaction. Dans l'hippocampe, une immunoréactivité est observée dans le stratum granulosum et à travers la région CA1 jusqu'à la région CA3. L'ensemble de ces résultats montre une hétérogénéité métabolique dans le cerveau et étaye l'hypothèse "astrocyte-neurone lactate shuttle" (ANL5) (Bittar et collaborateurs, 1996; Magistretti et Pellerin, 1999) qui propose que les astrocytes fournissent aux neurones activés du lactate comme substrat alternatif de leur métabolisme énergétique. ABSTRACT For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally. The two key enzymatic systems required for the use and production of these substats are lactate dehydrogenase (LDH; EC 1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA cycle and oxydative phosphorylation. Our study consisted in localizing these different systems with various histochemical procedures in the cat brain and two regions, i.e. hippocampus and primary visual cortex, of the human brain. First, by means of in situ hybridization with 33P labeled oligoprobes, we have demonstrated that the more oxidative enzymes (LDH-1 and PDHA1, the gene coding for PDHEla) are highly expressed in a variety of feline brain structures. These structures include the hippocampus, various thalamic nuclei and the pons. The cerebral cortex exhibits also a high LDH-1 and PDHAl expression. On the other hand, LDH-5 expression is poorer and more diffuse, although the hippocampus does seem to have a higher expression. These fmdings are consistent with our previous observation of the expression of LDH1 and LDH-5 in the rodent brain (Laughton et al, 2000). Real-time PCR (TagMan tm) revealed that, in various regions, LDH-1 is effectively more highly expressed than LDH-5. In a second set of experiments, monoclonal antibodies to LDH-5 and PDHeIa were applied to cryostat sections of post-mortem human hippocampus and occipital cortex. These procedures revealed not only that the two enzymes have different regional distributions, but also distinct cellular localisation. LDH-5 immunoreactivity is solely observed in astrocytes. In the occipital cortex, the white matter and layer I are immunopositive. In the hippocampus, the alveus and CA4 show LDH-5 immunoréactivity. PDHeIa has been detected, with few exceptions, only in neurons. Layer IV of the occipital cortex was most immmunoreactive. In the hippocampus, PDHela immunoreactivity is noticed in the stratum granulosum and through CA 1 to CA3 areas. The overall observations made in this study show that there is a metabolic heterogeneity in the brain and our findings support the hypothesis of an astrocyte-neuron lactate shuttle (ANLS)(Bittar et al., 1996; Magistretti & Pellerin, 1999) where astrocytes export to active neurons lactate to fuel their energy demands.
Resumo:
Dyskinesias are infrequent presentations in acute stroke (1%). They can be found more frequently as delayed presentations after a stroke, but the prevalence is not available from the literature. The full spectrum of hyper- and hypo-akinetic syndromes has been described, but three main pictures are rather specific of an acute stroke: limb shaking, hemichorea-hemiballism and unilateral asterixis. Besides limb shaking, that seems to reflect a transient diffuse ischemia of the frontosubcortical motor pathway, lesions are described at all levels of the frontosubcortical motor circuit including the sensorimotor frontoparietal cortex, the striatum, the pallidum, the thalamic nuclei, the subthalamic nucleus, the substantia nigra, the cerebellum, the brainstem and their interconnecting pathways, as ischemic or hemorrhagic strokes. The preferentially late development of dyskinesia could reflect the return to a more ancestral motor control level, the most functional possible with the remaining configuration of structures, elaborated by brain plasticity after stroke.
Resumo:
Angioedema is a rare side effect of angiotensin converting enzyme (ACE) inhibitors. Its cause is probably related to the accumulation of bradykinin and substance P, i.e. two proinflammatory peptides normally inactivated by ACE. Angioedema occurs most of the time at the early phase of treatment, but may also develop during long-term treatment. It might involve the gastro-intestinal tract, leading to abdominal pain, vomiting and/or diarrhea, as well as pancreatitis. Dipeptidyl-ptidase-4 (DPP-4) is another enzyme allowing the degradation of bradykinin and substance P. Co-administering an ACE inhibitor and a DPP-4 inhibitor (as an antidiabetic agent) increases significantly the risk of angioedema.