985 resultados para nuclear engineering
Resumo:
"January 28, 1960."
Resumo:
"Prepared under contract with the United States Atomic Energy Commission, GNEC/AEC contract AT-(40-I)-2674 and PRWRA/AEC contract AT-(40-I)-2672."
Resumo:
"July 1955."
Resumo:
"United States Atomic Energy Commission, Contract No. AT (11-1)-171."
Resumo:
Issued May 26, 1967.
Resumo:
Mode of access: Internet.
Resumo:
AEC Report No. TID-4101 REV. 1.
Resumo:
Uranium oxide has been reduced by carbon under vacuum at 2250°C, to yield a product consisting of dendritic uranium carbide in a matrix of uranium.
Resumo:
April 1955.
Resumo:
Mode of access: Internet.
Resumo:
"Date published: August 1981."
Resumo:
Mode of access: Internet.
High stress monitoring of prestressing tendons in nuclear concrete vessels using fibre-optic sensors
Resumo:
Maintaining the structural health of prestressed concrete nuclear containments is a key element in ensuring nuclear reactors are capable of meeting their safety requirements. This paper discusses the attachment, fabrication and characterisation of optical fibre strain sensors suitable for the prestress monitoring of irradiated steel prestressing tendons. The all-metal fabrication and welding process allowed the instrumented strand to simultaneously monitor and apply stresses up to 1300 MPa (80% of steel's ultimate tensile strength). There were no adverse effects to the strand's mechanical properties or integrity. After sensor relaxation through cyclic stress treatment, strain transfer between the optical fibre sensors and the strand remained at 69%. The fibre strain sensors could also withstand the non-axial forces induced as the strand was deflected around a 4.5 m bend radius. Further development of this technology has the potential to augment current prestress monitoring practices, allowing distributed measurements of short- and long-term prestress losses in nuclear prestressed-concrete vessels. © 2014 Elsevier B.V.
Resumo:
The U.S. Nuclear Regulatory Commission implemented a safety goal policy in response to the 1979 Three Mile Island accident. This policy addresses the question “How safe is safe enough?” by specifying quantitative health objectives (QHOs) for comparison with results from nuclear power plant (NPP) probabilistic risk analyses (PRAs) to determine whether proposed regulatory actions are justified based on potential safety benefit. Lessons learned from recent operating experience—including the 2011 Fukushima accident—indicate that accidents involving multiple units at a shared site can occur with non-negligible frequency. Yet risk contributions from such scenarios are excluded by policy from safety goal evaluations—even for the nearly 60% of U.S. NPP sites that include multiple units. This research develops and applies methods for estimating risk metrics for comparison with safety goal QHOs using models from state-of-the-art consequence analyses to evaluate the effect of including multi-unit accident risk contributions in safety goal evaluations.