858 resultados para nonlinear waves propagation
Resumo:
Spatiotemporal pattern formation in the electrocatalytic oxidation of sulfide on a platinum disk is investigated using electrochemical methods and a charge-coupled device (CCD) camera simultaneously. The system is characterized by different oscillatory regions spread over a wide potential range. An additional series resistor and a large electrode area facilitate observation of multiple regions of kinetic instabilities along the current/potential curve. Spatiotemporal patterns on the working electrode, such as fronts, pulses, spirals, twinkling eyes, labyrinthine stripes, and alternating synchronized deposition and dissolution, are observed at different operating conditions of series resistance and sweep rate.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present thesis focuses on elastic waves behaviour in ordinary structures as well as in acousto-elastic metamaterials via numerical and experimental applications. After a brief introduction on the behaviour of elastic guided waves in the framework of non-destructive evaluation (NDE) and structural health monitoring (SHM) and on the study of elastic waves propagation in acousto-elastic metamaterials, dispersion curves for thin-walled beams and arbitrary cross-section waveguides are extracted via Semi-Analytical Finite Element (SAFE) methods. Thus, a novel strategy tackling signal dispersion to locate defects in irregular waveguides is proposed and numerically validated. Finally, a time-reversal and laser-vibrometry based procedure for impact location is numerically and experimentally tested. In the second part, an introduction and a brief review of the basic definitions necessary to describe acousto-elastic metamaterials is provided. A numerical approach to extract dispersion properties in such structures is highlighted. Afterwards, solid-solid and solid-fluid phononic systems are discussed via numerical applications. In particular, band structures and transmission power spectra are predicted for 1P-2D, 2P-2D and 2P-3D phononic systems. In addition, attenuation bands in the ultrasonic as well as in the sonic frequency regimes are experimentally investigated. In the experimental validation, PZTs in a pitch-catch configuration and laser vibrometric measurements are performed on a PVC phononic plate in the ultrasonic frequency range and sound insulation index is computed for a 2P-3D phononic barrier in the sonic frequency range. In both cases the numerical-experimental results comparison confirms the existence of the numerical predicted band-gaps. Finally, the feasibility of an innovative passive isolation strategy based on giant elastic metamaterials is numerically proved to be practical for civil structures. In particular, attenuation of seismic waves is demonstrated via finite elements analyses. Further, a parametric study shows that depending on the soil properties, such an earthquake-proof barrier could lead to significant reduction of the superstructure displacement.
Resumo:
"February 1988."
Resumo:
Cilia and flagella are hairlike extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consists of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.
Resumo:
Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.
Resumo:
Nonlinear pulse propagation in a few mode fiber is experimentally investigated, by measuring temporal and phase responses of the output pulses by use of a frequency discriminator technique, showing that self-phase modulation, dispersion and linear mode-coupling are the dominant effects.
Resumo:
We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.
Resumo:
We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.
Resumo:
Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.
Resumo:
We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity. © 2014 World Scientific Publishing Company.
Resumo:
Nonlinear pulse propagation in a few mode fiber is experimentally investigated, by measuring temporal and phase responses of the output pulses by use of a frequency discriminator technique, showing that self-phase modulation, dispersion and linear mode-coupling are the dominant effects.