992 resultados para nitrogen input
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The use of nanoscale low-dimensional systems could boost the sensitivity of gas sensors. In this work we simulate a nanoscopic sensor based on carbon nanotubes with a large number of binding sites using ab initio density functional electronic structure calculations coupled to the Non-Equilibrium Green's Function formalism. We present a recipe where the adsorption process is studied followed by conductance calculations of a single defect system and of more realistic disordered system considering different coverages of molecules as one would expect experimentally. We found that the sensitivity of the disordered system is enhanced by a factor of 5 when compared to the single defect one. Finally, our results from the atomistic electronic transport are used as input to a simple model that connects them to experimental parameters such as temperature and partial gas pressure, providing a procedure for simulating a realistic nanoscopic gas sensor. Using this methodology we show that nitrogen-rich carbon nanotubes could work at room temperature with extremely high sensitivity. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4739280]
Resumo:
Nitrogen management has been intensively studied on several crops and recently associated with variable rate on-the-go application based on crop sensors. Such studies are scarce for sugarcane and as a biofuel crop the energy input matters, seeking high positive energy balance production and low carbon emission on the whole production system. This article presents the procedure and shows the first results obtained using a nitrogen and biomass sensor (N-Sensor (TM) ALS, Yara International ASA) to indicate the nitrogen application demands of commercial sugarcane fields. Eight commercial fields from one sugar mill in the state of Sao Paulo, Brazil, varying from 15 to 25 ha in size, were monitored. Conditions varied from sandy to heavy soils and the previous harvesting occurred in May and October 2009, including first, second, and third ratoon stages. Each field was scanned with the sensor three times during the season (at 0.2, 0.4, and 0.6 m stem height), followed by tissue sampling for biomass and nitrogen uptake at ten spots inside the area, guided by the different values shown by the sensor. The results showed a high correlation between sensor values and sugarcane biomass and nitrogen uptake, thereby supporting the potential use of this technology to develop algorithms to manage variable rate application of nitrogen for sugarcane.
Resumo:
The main purpose of this study is to perform a nitrogen budget survey for the entire Brazilian Amazon region. The main inputs of nitrogen to the region are biological nitrogen fixation occurring in tropical forests (7.7 Tg. yr(-1)), and biological nitrogen fixation in agricultural lands mainly due to the cultivation of a large area with soybean, which is an important nitrogen-fixing crop (1.68 Tg. yr(-1)). The input due to the use of N fertilizers (0.48 Tg. yr(-1)) is still incipient compared to the other two inputs mentioned above. The major output flux is the riverine flux, equal to 2.80 Tg. yr(-1) and export related to foodstuff, mainly the transport of soybean and beef to other parts of the country. The continuous population growth and high rate of urbanization may pose new threats to the nitrogen cycle of the region through the burning of fossil fuel and dumping of raw domestic sewage in rivers and streams of the region.
Resumo:
Water-bound nitrogen (N) cycling in temperate terrestrial ecosystems of the Northern Hemisphere is today mainly inorganic because of anthropogenic release of reactive N to the environment. In little-industrialized and remote areas, in contrast, a larger part of N cycling occurs as dissolved organic N (DON). In a north Andean tropical montane forest in Ecuador, the N cycle changed markedly during 1998–2010 along with increasing N deposition and reduced soil moisture. The DON concentrations and the fractional contribution of DON to total N significantly decreased in rainfall, throughfall, and soil solutions. This inorganic turn of the N cycle was most pronounced in rainfall and became weaker along the flow path of water through the system until it disappeared in stream water. Decreasing organic contributions to N cycling were caused not only by increasing inorganic N input but also by reduced DON production and/or enhanced DON decomposition. Accelerated DON decomposition might be attributable to less waterlogging and higher nutrient availability. Significantly increasing NO3-N concentrations and NO3-N/NH4-N concentration ratios in throughfall and litter leachate below the thick organic layers indicated increasing nitrification. In mineral soil solutions, in contrast, NH4-N concentrations increased and NO3-N/NH4-N concentration ratios decreased significantly, suggesting increasing net ammonification. Our results demonstrate that the remote tropical montane forests on the rim of the Amazon basin experienced a pronounced change of the N cycle in only one decade. This change likely parallels a similar change which followed industrialization in the temperate zone of the Northern Hemisphere more than a century ago.
Resumo:
Incident rainfall is a major source of nutrient input to a forest ecosystem and the consequent throughfall and stemflow contribute to nutrient cycling. These rain-based fluxes were measured over 12 mo in two forest types in Korup National Park, Cameroon, one with low (LEM) and one with high (HEM) ectomycorrhizal abundances of trees. Throughfall was 96.6 and 92.4% of the incident annual rainfall (5370 mm) in LEM and HEM forests respectively; stemflow was correspondingly 1.5 and 2.2%. Architectural analysis showed that ln(funneling ratio) declined linearly with increasing ln(basal area) of trees. Mean annual inputs of N, P, K, Mg and Ca in incident rainfall were 1.50, 1.07, 7.77, 5.25 and 9.27 kg ha(-1), and total rain-based inputs to the forest floor were 5.0, 3.2, 123.4, 14.4 and 37.7 kg ha-1 respectively. The value for K is high for tropical forests and that for N is low. Nitrogen showed a significantly lower loading of throughfall and stemflow in HEM than in LEM forest, this being associated in the HEM forest with a greater abundance of epiphytic bryophytes which may absorb more N. Incident rainfall provided c. 35% of the gross input of P to the forest floor (i. e., rain-based plus small litter inputs), a surprisingly high contribution given the sandy P-poor soils. At the start of the wet season leaching of K from the canopy was particularly high. Calcium in the rain was also highest at this time, most likely due to washing off of dry-deposited Harmattan dusts. It is proposed that throughfall has an important `priming' function in the rapid decomposition of litter and mineralization of P at the start of the wet season. The contribution of P inputted from the atmosphere appears to be significant when compared to the rates of P mineralization from leaf litter.
Resumo:
To provide insights into the long-term evolution of aquatic ecosystems without human interference, we here evaluate a decadal- to centennial-scale-resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co-evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ~1900 varve years), the lake was ~10-15 m deep and characterized by anoxic bottom-water conditions and a high nutrient content. The following ~5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water-column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (~4000-5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient-rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short-term climate variability as reflected in centennial-scale climate perturbations.
Resumo:
The d15N of surface and down-core sediments spanning the last 20-200 kyr from the entire South China Sea (SCS) ranges only from ~3.0 to ~6.5 per mil, with no correlation with discernible paleoclimatic/oceanographic changes. Detailed profiles of the uppermost sediment column, including fluff samples, indicate a minor diagenetic overprint of 0.3-1.2 per mil at the sediment-water interface. The absence of any correlation with reconstructed (glacial-interglacial) changes in primary production, terrigenous input, and/or sea level related basin configuration is attributed to a complete consumption of nitrate during primary production in this marginal basin during at least the last 140,000 years. This, in turn, implies that the d15N of the nitrate used during primary production remained approximately constant during the last climatic cycle. The proposed scenario infers an unchanged nitrogen isotopic composition of the western Pacific subsurface nitrate between glacial and interglacial stages as well as during terminations and thus constrains proposed changes in the oceanic N inventory.
Resumo:
Ocean Drilling Program (ODP) Site 1151 (Sacks, Suyehiro, Acton, et al., 2000, doi:10.2973/odp.proc.ir.186.2000) is located in an area where the surface water mass is influenced by both the Kuroshio and Oyashio Currents. The site also receives a relatively high flux of detrital materials from riverine input from Honsyu Island and eolian input from Central and East Asia. We analyzed alkenones and alkenoates in the sediments to reconstruct alkenone unsaturation index (Uk'37)-based sea-surface temperature (SST), total organic carbon, and total nitrogen to estimate the terrigenous contribution by the C/N ratio during the last glacial-interglacial cycle. The major elements were also analyzed to examine the variation in terrigenous composition.
Resumo:
Glacial-interglacial changes in sedimentary d15N over the last 120 kyr display a remarkably similar pattern in timing and amplitude in core records extending from the denitrification zone in the eastern tropical North Pacific (ETNP), where subsurface denitrification is active, to the Oregon margin, where no denitrification occurs today. Low d15N values (4-6 per mil) generally characterize glacial stages 2 and 4, and higher d15N values (7-10 per mil) are representative of the Holocene, millennial-scale periods within stage 3, and stage 5. The inferred synchroneity of d15N variations along the entire margin implies that the nitrate isotopic signal produced in the oxygen-poor subsurface waters in the ETNP is rapidly advected northward and recorded at sites far beyond the boundaries of the modern denitrification zone. Similar to d15N, primary production indicators (percent Corg, Ba/Al, and percent opal) show glacial-interglacial as well as millennial-scale variations along the NE Pacific margin, with higher primary production during warm periods. However, the relative phasing between d15N and paleoproduction tracers within individual records changes latitudinally. Whereas d15N and primary production vary approximately synchronously in the midlatitudes, production lags d15N in the ETNP by several kiloyears. This lag calls for a new understanding of the processes driving denitrification in the ETNP. We suggest that oxygen input by the Equatorial Undercurrent as well as local organic matter flux controls denitrification rates in the ETNP. Moreover, the differences in relative timing point to a time-transgressive development of upwelling-favorable winds along the NE Pacific margin after the last glaciation, with those in the north developing several kiloyears earlier.
Resumo:
We estimated the relative contribution of atmospheric Nitrogen (N) input (wet and dry deposition and N fixation) to the epipelagic food web by measuring N isotopes of different functional groups of epipelagic zooplankton along 23°W (17°N-4°S) and 18°N (20-24°W) in the Eastern Tropical Atlantic. Results were related to water column observations of nutrient distribution and vertical diffusive flux as well as colony abundance of Trichodesmium obtained with an Underwater Vision Profiler (UVP5). The thickness and depth of the nitracline and phosphocline proved to be significant predictors of zooplankton stable N isotope values. Atmospheric N input was highest (61% of total N) in the strongly stratified and oligotrophic region between 3 and 7°N, which featured very high depth-integrated Trichodesmium abundance (up to 9.4×104 colonies m-2), strong thermohaline stratification and low zooplankton delta15N (~2 per mil). Relative atmospheric N input was lowest south of the equatorial upwelling between 3 and 5°S (27%). Values in the Guinea Dome region and north of Cape Verde ranged between 45 and 50%, respectively. The microstructure-derived estimate of the vertical diffusive N flux in the equatorial region was about one order of magnitude higher than in any other area (approximately 8 mmol m-2 d 1). At the same time, this region received considerable atmospheric N input (35% of total). In general, zooplankton delta15N and Trichodesmium abundance were closely correlated, indicating that N fixation is the major source of atmospheric N input. Although Trichodesmium is not the only N fixing organism, its abundance can be used with high confidence to estimate the relative atmospheric N input in the tropical Atlantic (r2 = 0.95). Estimates of absolute N fixation rates are two- to tenfold higher than incubation-derived rates reported for the same regions. Our approach integrates over large spatial and temporal scales and also quantifies fixed N released as dissolved inorganic and organic N. In a global analysis, it may thus help to close the gap in oceanic N budgets.
Resumo:
A comprehensive assessment of nitrogen (N) flows at the landscape scale is fundamental to understand spatial interactions in the N cascade and to inform the development of locally optimised N management strategies. To explore these interactions, complete N budgets were estimated for two contrasting hydrological catchments (dominated by agricultural grassland vs. semi-natural peat-dominated moorland), forming part of an intensively studied landscape in southern Scotland. Local scale atmospheric dispersion modelling and detailed farm and field inventories provided high resolution estimations of input fluxes. Direct agricultural inputs (i.e. grazing excreta, N2 fixation, organic and synthetic fertiliser) accounted for most of the catchment N inputs, representing 82% in the grassland and 62% in the moorland catchment, while atmospheric deposition made a significant contribution, particularly in the moorland catchment, contributing 38% of the N inputs. The estimated catchment N budgets highlighted areas of key uncertainty, particularly N2 exchange and stream N export. The resulting N balances suggest that the study catchments have a limited capacity to store N within soils, vegetation and groundwater. The "catchment N retention", i.e. the amount of N which is either stored within the catchment or lost through atmospheric emissions, was estimated to be 13% of the net anthropogenic input in the moorland and 61% in the grassland catchment. These values contrast with regional scale estimates: Catchment retentions of net anthropogenic input estimated within Europe at the regional scale range from 50% to 90%, with an average of 82% (Billen et al., 2011). This study emphasises the need for detailed budget analyses to identify the N status of European landscapes.
Resumo:
El nitrógeno (N) y el fósforo (P) son nutrientes esenciales en la producción de cultivos. El desarrollo de los fertilizantes de síntesis durante el siglo XX permitió una intensificación de la agricultura y un aumento de las producciones pero a su vez el gran input de nutrientes ha resultado en algunos casos en sistemas poco eficientes incrementando las pérdidas de estos nutrientes al medio ambiente. En el caso del P, este problema se agrava debido a la escasez de reservas de roca fosfórica necesaria para la fabricación de fertilizantes fosfatados. La utilización de residuos orgánicos en agricultura como fuente de N y P es una buena opción de manejo que permite valorizar la gran cantidad de residuos que se generan. Sin embargo, es importante conocer los procesos que se producen en el suelo tras la aplicación de los mismos, ya que influyen en la disponibilidad de nutrientes que pueden ser utilizados por el cultivo así como en las pérdidas de nutrientes de los agrosistemas que pueden ocasionar problemas de contaminación. Aunque la dinámica del N en el suelo ha sido más estudiada que la del P, los problemas importantes de contaminación por nitratos en zonas vulnerables hacen necesaria la evaluación de aquellas prácticas de manejo que pudieran agravar esta situación, y en el caso de los residuos orgánicos, la evaluación de la respuesta agronómica y medioambiental de la aplicación de materiales con un alto contenido en N (como los residuos procedentes de la industria vinícola y alcoholera). En cuanto al P, debido a la mayor complejidad de su ciclo y de las reacciones que ocurren en el suelo, hay un mayor desconocimiento de los factores que influyen en su dinámica en los sistemas suelo-planta, lo que supone nuevas oportunidades de estudio en la evaluación del uso agrícola de los residuos orgánicos. Teniendo en cuenta los conocimientos previos sobre cada nutriente así como las necesidades específicas en el estudio de los mismos, en esta Tesis se han evaluado: (1) el efecto de la aplicación de residuos procedentes de la industria vinícola y alcoholera en la dinámica del N desde el punto de vista agronómico y medioambiental en una zona vulnerable a la contaminación por nitratos; y (2) los factores que influyen en la disponibilidad de P en el suelo tras la aplicación de residuos orgánicos. Para ello se han llevado a cabo incubaciones de laboratorio así como ensayos de campo que permitieran evaluar la dinámica de estos nutrientes en condiciones reales. Las incubaciones de suelo en condiciones controladas de humedad y temperatura para determinar el N mineralizado se utilizan habitualmente para estimar la disponibilidad de N para el cultivo así como el riesgo medioambiental. Por ello se llevó a cabo una incubación en laboratorio para conocer la velocidad de mineralización de N de un compost obtenido a partir de residuos de la industria vinícola y alcoholera, ampliamente distribuida en Castilla-La Mancha, región con problemas importantes de contaminación de acuíferos por nitratos. Se probaron tres dosis crecientes de compost correspondientes a 230, 460 y 690 kg de N total por hectárea que se mezclaron con un suelo franco arcillo arenoso de la zona. La evolución del N mineral en el suelo a lo largo del tiempo se ajustó a un modelo de regresión no lineal, obteniendo valores bajos de N potencialmente mineralizable y bajas contantes de mineralización, lo que indica que se trata de un material resistente a la mineralización y con una lenta liberación de N en el suelo, mineralizándose tan solo 1.61, 1.33 y 1.21% del N total aplicado con cada dosis creciente de compost (para un periodo de seis meses). Por otra parte, la mineralización de N tras la aplicación de este material también se evaluó en condiciones de campo, mediante la elaboración de un balance de N durante dos ciclos de cultivo (2011 y 2012) de melón bajo riego por goteo, cultivo y manejo agrícola muy característicos de la zona de estudio. Las constantes de mineralización obtenidas en el laboratorio se ajustaron a las temperaturas reales en campo para predecir el N mineralizado en campo durante el ciclo de cultivo del melón, sin embargo este modelo generalmente sobreestimaba el N mineralizado observado en campo, por la influencia de otros factores no tenidos en cuenta para obtener esta predicción, como el N acumulado en el suelo, el efecto de la planta o las fluctuaciones de temperatura y humedad. Tanto el ajuste de los datos del laboratorio al modelo de mineralización como las predicciones del mismo fueron mejores cuando se consideraba el efecto de la mezcla suelo-compost que cuando se aislaba el N mineralizado del compost, mostrando la importancia del efecto del suelo en la mineralización del N procedente de residuos orgánicos. Dado que esta zona de estudio ha sido declarada vulnerable a la contaminación por nitratos y cuenta con diferentes unidades hidrológicas protegidas, en el mismo ensayo de campo con melón bajo riego por goteo se evaluó el riesgo de contaminación por nitratos tras la aplicación de diferentes dosis de compost bajo dos regímenes de riego, riego ajustado a las necesidades del cultivo (90 ó 100% de la evapotranspiración del cultivo (ETc)) o riego excedentario (120% ETc). A lo largo del ciclo de cultivo se estimó semanalmente el drenaje mediante la realización de un balance hídrico, así como se tomaron muestras de la solución de suelo y se determinó su concentración de nitratos. Para evaluar el riesgo de contaminación de las aguas subterráneas asociado con estas prácticas, se utilizaron algunos índices medioambientales para determinar la variación en la calidad del agua potable (Índice de Impacto (II)) y en la concentración de nitratos del acuífero (Índice de Impacto Ambiental (EII)). Para combinar parámetros medioambientales con parámetros de producción, se calculó la eficiencia de manejo. Se observó que la aplicación de compost bajo un régimen de riego ajustado no aumentaba el riesgo de contaminación de las aguas subterráneas incluso con la aplicación de la dosis más alta. Sin embargo, la aplicación de grandes cantidades de compost combinada con un riego excedentario supuso un incremento en el N lixiviado a lo largo del ciclo de cultivo, mientras que no se obtuvieron mayores producciones con respecto al riego ajustado. La aplicación de residuos de la industria vinícola y alcoholera como fuente de P fue evaluada en suelos calizos caracterizados por una alta capacidad de retención de P, lo cual en algunos casos limita la disponibilidad de este nutriente. Para ello se llevó a cabo otro ensayo de incubación con dos suelos de diferente textura, con diferente contenido de carbonato cálcico, hierro y con dos niveles de P disponible; a los que se aplicaron diferentes materiales procedentes de estas industrias (con y sin compostaje previo) aportando diferentes cantidades de P. A lo largo del tiempo se analizó el P disponible del suelo (P Olsen) así como el pH y el carbono orgánico disuelto. Al final de la incubación, con el fin de estudiar los cambios producidos por los diferentes residuos en el estado del P del suelo se llevó a cabo un fraccionamiento del P inorgánico del suelo, el cual se separó en P soluble y débilmente enlazado (NaOH-NaCl-P), P soluble en reductores u ocluido en los óxidos de Fe (CBD-P) y P poco soluble precipitado como Ca-P (HCl-P); y se determinó la capacidad de retención de P así como el grado de saturación de este elemento en el suelo. En este ensayo se observó que, dada la naturaleza caliza de los suelos, la influencia de la cantidad de P aplicado con los residuos en el P disponible sólo se producía al comienzo del periodo de incubación, mientras que al final del ensayo el incremento en el P disponible del suelo se igualaba independientemente del P aplicado con cada residuo, aumentando el P retenido en la fracción menos soluble con el aumento del P aplicado. Por el contrario, la aplicación de materiales orgánicos menos estabilizados y con un menor contenido en P, produjo un aumento en las formas de P más lábiles debido a una disolución del P retenido en la fracción menos lábil, lo cual demostró la influencia de la materia orgánica en los procesos que controlan el P disponible en el suelo. La aplicación de residuos aumentó el grado de saturación de P de los suelos, sin embargo los valores obtenidos no superaron los límites establecidos que indican un riesgo de contaminación de las aguas. La influencia de la aplicación de residuos orgánicos en las formas de P inorgánico y orgánico del suelo se estudió además en un suelo ácido de textura areno francosa tras la aplicación en campo a largo plazo de estiércol vacuno y de compost obtenido a partir de biorresiduos, así como la aplicación combinada de compost y un fertilizante mineral (superfosfato tripe), en una rotación de cultivos. En muestras de suelo recogidas 14 años después del establecimiento del experimento en campo, se determinó el P soluble y disponible, la capacidad de adsorción de P, el grado de saturación de P así como diferentes actividades enzimáticas (actividad deshidrogenasa, fosfatasa ácida y fosfatasa alcalina). Las diferentes formas de P orgánico en el suelo se estudiaron mediante una técnica de adición de enzimas con diferentes substratos específicos a extractos de suelo de NaOH-EDTA, midiendo el P hidrolizado durante un periodo de incubación por colorimetría. Las enzimas utilizadas fueron la fosfatasa ácida, la nucleasa y la fitasa las cuales permitieron identificar monoésteres hidrolizables (monoester-like P), diésteres (DNA-like P) e inositol hexaquifosfato (Ins6P-like P). La aplicación a largo plazo de residuos orgánicos aumentó el P disponible del suelo proporcionalmente al P aplicado con cada tipo de fertilización, suponiendo un mayor riesgo de pérdidas de P dado el alto grado de saturación de este suelo. La aplicación de residuos orgánicos aumentó el P orgánico del suelo resistente a la hidrólisis enzimática, sin embargo no influyó en las diferentes formas de P hidrolizable por las enzimas en comparación con las observadas en el suelo sin enmendar. Además, las diferentes formas de P orgánico aplicadas con los residuos orgánicos no se correspondieron con las analizadas en el suelo lo cual demostró que éstas son el resultado de diferentes procesos en el suelo mediados por las plantas, los microorganismos u otros procesos abióticos. En este estudio se encontró una correlación entre el Ins6P-like P y la actividad microbiana (actividad deshidrogenasa) del suelo, lo cual refuerza esta afirmación. Por último, la aplicación de residuos orgánicos como fuente de N y P en la agricultura se evaluó agronómicamente en un escenario real. Se estableció un experimento de campo para evaluar el compost procedente de residuos de bodegas y alcoholeras en el mismo cultivo de melón utilizado en el estudio de la mineralización y lixiviación de N. En este experimento se estudió la aplicación de tres dosis de compost: 1, 2 y 3 kg de compost por metro lineal de plantación correspondientes a 7, 13 y 20 t de compost por hectárea respectivamente; y se estudió el efecto sobre el crecimiento de las plantas, la acumulación de N y P en la planta, así como la producción y calidad del cultivo. La aplicación del compost produjo un ligero incremento en la biomasa vegetal acompañado por una mejora significativa de la producción con respecto a las parcelas no enmendadas, obteniéndose la máxima producción con la aplicación de 2 kg de compost por metro lineal. Aunque los efectos potenciales del N y P fueron parcialmente enmascarados por otras entradas de estos nutrientes en el sistema (alta concentración de nitratos en el agua de riego y ácido fosfórico suministrado por fertirrigación), se observó una mayor acumulación de P uno de los años de estudio que resultó en un aumento en el número de frutos en las parcelas enmendadas. Además, la mayor acumulación de N y P disponible en el suelo al final del ciclo de cultivo indicó el potencial uso de estos materiales como fuente de estos nutrientes. ABSTRACT Nitrogen (N) and phosphorus (P) are essential nutrients in crop production. The development of synthetic fertilizers during the 20th century allowed an intensification of the agriculture increasing crop yields but in turn the great input of nutrients has resulted in some cases in inefficient systems with higher losses to the environment. Regarding P, the scarcity of phosphate rock reserves necessary for the production of phosphate fertilizers aggravates this problem. The use of organic wastes in agriculture as a source of N and P is a good option of management that allows to value the large amount of wastes generated. However, it is important to understand the processes occurring in the soil after application of these materials, as they affect the availability of nutrients that can be used by the crop and the nutrient losses from agricultural systems that can cause problems of contamination. Although soil N dynamic has been more studied than P, the important concern of nitrate pollution in Nitrate Vulnerable Zones requires the evaluation of those management practices that could aggravate this situation, and in the case of organic wastes, the evaluation of the agronomic and environmental response after application of materials with a high N content (such as wastes from winery and distillery industries). On the other hand, due to the complexity of soil P cycle and the reactions that occur in soil, there is less knowledge about the factors that can influence its dynamics in the soil-plant system, which means new opportunities of study regarding the evaluation of the agricultural use of organic wastes. Taking into account the previous knowledge of each nutrient and the specific needs of study, in this Thesis we have evaluated: (1) the effect of the application of wastes from the winery and distillery industries on N dynamics from the agronomic and environmental viewpoint in a vulnerable zone; and (2) the factors that influence P availability in soils after the application of organic wastes. With this purposes, incubations were carried out in laboratory conditions as well as field trials that allow to assess the dynamic of these nutrients in real conditions. Soil incubations under controlled moisture and temperature conditions to determine N mineralization are commonly used to estimate N availability for crops together with the environmental risk. Therefore, a laboratory incubation was conducted in order to determine the N mineralization rate of a compost made from wastes generated in the winery and distillery industries, widely distributed in Castilla-La Mancha, a region with significant problems of aquifers contamination by nitrates. Three increasing doses of compost corresponding to 230, 460 and 690 kg of total N per hectare were mixed with a sandy clay loam soil collected in this area. The evolution of mineral N in soil over time was adjusted to a nonlinear regression model, obtaining low values of potentially mineralizable N and low constants of mineralization, indicating that it is a material resistant to mineralization with a slow release of N, with only 1.61, 1.33 and 1.21% of total N applied being mineralized with each increasing dose of compost (for a period of six months). Furthermore, N mineralization after the application of this material was also evaluated in field conditions by carrying out a N balance during two growing seasons (2011 and 2012) of a melon crop under drip irrigation, a crop and management very characteristic of the area of study. The mineralization constants obtained in the laboratory were adjusted to the actual temperatures observed in the field to predict N mineralized during each growing season, however, this model generally overestimated the N mineralization observed in the field, because of the influence of other factors not taken into account for this prediction, as N accumulated in soil, the plant effect or the fluctuations of temperature and moisture. The fitting of the laboratory data to the model as well as the predictions of N mineralized in the field were better when considering N mineralized from the soil-compost mixture rather than when N mineralized from compost was isolated, underlining the important role of the soil on N mineralization from organic wastes. Since the area of study was declared vulnerable to nitrate pollution and is situated between different protected hydrological units, the risk of nitrate pollution after application of different doses compost was evaluated in the same field trial with melon under two irrigation regimes, irrigation adjusted to the crop needs (90 or 100% of the crop evapotranspiration (ETc)) or excedentary irrigation (120% ETc). Drainage was estimated weekly throughout the growing season by conducting a water balance, samples of the soil solution were taken and the concentration of nitrates was determined. To assess the risk of groundwater contamination associated with these practices, some environmental indices were used to determine the variation in the quality of drinking water (Impact Index (II)) and the nitrates concentration in the groundwater (Environmental Impact Index (EII)). To combine environmental parameters together with yield parameters, the Management Efficiency was calculated. It was observed that the application of compost under irrigation adjusted to the plant needs did not represent a higher risk of groundwater contamination even with the application of the highest doses. However, the application of large amounts of compost combined with an irrigation surplus represented an increase of N leaching during the growing season compared with the unamended plots, while no additional yield with respect to the adjusted irrigation strategy is obtained. The application of wastes derived from the winery and distillery industry as source of P was evaluated in calcareous soils characterized by a high P retention capacity, which in some cases limits the availability of this nutrient. Another incubation experiment was carried out using two soils with different texture, different calcium carbonate and iron contents and two levels of available P; to which different materials from these industries (with and without composting) were applied providing different amounts of P. Soil available P (Olsen P), pH and dissolved organic carbon were analyzed along time. At the end of the incubation, in order to study the changes in soil P status caused by the different residues, a fractionation of soil inorganic P was carried out, which was separated into soluble and weakly bound P (NaOH-NaCl- P), reductant soluble P or occluded in Fe oxides (CBD-P) and P precipitated as poorly soluble Ca-P (HCl-P); and the P retention capacity and degree of P saturation were determined as well. Given the calcareous nature of the soils, the influence of the amount of P applied with the organic wastes in soil available P only occurred at the beginning of the incubation period, while at the end of the trial the increase in soil available P equalled independently of the amount of P applied with each residue, increasing the P retained in the least soluble fraction when increasing P applied. Conversely, the application of less stabilized materials with a lower content of P resulted in an increase in the most labile P forms due to dissolution of P retained in the less labile fraction, demonstrating the influence of organic matter addition on soil P processes that control P availability in soil. As expected, the application of organic wastes increased the degree of P saturation in the soils, however the values obtained did not exceed the limits considered to pose a risk of water pollution. The influence of the application of organic wastes on inorganic and organic soil P forms was also studied in an acid loamy sand soil after long-term field application of cattle manure and biowaste compost and the combined application of compost and mineral fertilizer (triple superphosphate) in a crop rotation. Soil samples were collected 14 years after the establishment of the field experiment, and analyzed for soluble and available P, P sorption capacity, degree of P saturation and enzymatic activities (dehydrogenase, acid phosphatase and alkaline phosphatase). The different forms of organic P in soil were determined by using an enzyme addition technique, based on adding enzymes with different substrate specificities to NaOH-EDTA soil extracts, measuring the hydrolyzed P colorimetrically after an incubation period. The enzymes used were acid phosphatase, nuclease and phytase which allowed to identify hydrolyzable monoesters (monoester-like P) diesters (DNA-like P) and inositol hexakisphosphate (Ins6P-like P). The long-term application of organic wastes increased soil available P proportionally to the P applied with each type of fertilizer, assuming a higher risk of P losses given the high degree of P saturation of this soil. The application of organic wastes increased soil organic P resistant to enzymatic hydrolysis, but no influence was observed regarding the different forms of enzyme hydrolyzable organic P compared to those observed in the non-amended soil. Furthermore, the different forms of organic P applied with the organic wastes did not correspond to those analyzed in the soil which showed that these forms in soil are a result of multifaceted P turnover processes in soil affected by plants, microorganisms and abiotic factors. In this study, a correlation between Ins6P-like P and the microbial activity (dehydrogenase activity) of soil was found, which reinforces this claim. Finally, the application of organic wastes as a source of N and P in agriculture was evaluated agronomically in a real field scenario. A field experiment was established to evaluate the application of compost made from wine-distillery wastes in the same melon crop used in the experiments of N mineralization and leaching. In this experiment the application of three doses of compost were studied: 1 , 2 and 3 kg of compost per linear meter of plantation corresponding to 7, 13 and 20 tonnes of compost per hectare respectively; and the effect on plant growth, N and P accumulation in the plant as well as crop yield and quality was studied. The application of compost produced a slight increase in plant biomass accompanied by a significant improvement in crop yield with respect to the unamended plots, obtaining the maximum yield with the application of 2 kg of compost per linear meter. Although the potential effects of N and P were partially masked by other inputs of these nutrients in the system (high concentration of nitrates in the irrigation water and phosphoric acid supplied by fertigation), an effect of P was observed the first year of study resulting in a greater plant P accumulation and in an increase in the number of fruits in the amended plots. In addition, the higher accumulation of available N and P in the topsoil at the end of the growing season indicated the potential use of this material as source of these nutrients.
Resumo:
Knowledge of the subduction input flux of nitrogen (N) in altered oceanic crust (AOC) is critical in any attempt to mass-balance N across arc-trench systems on a global or individual-margin basis. We have employed sealed-tube, carrier-gas-based methods to examine the N concentrations and isotopic compositions of AOC. Analyses of 53 AOC samples recovered on DSDP/ODP legs from the North and South Pacific, the North Atlantic, and the Antarctic oceans (with larger numbers of samples from Site 801 outboard of the Mariana trench and Site 1149 outboard of the Izu trench), and 14 composites for the AOC sections at Site 801, give N concentrations of 1.3 to 18.2 ppm and d15N_air of -11.6? to +8.3?, indicating significant N enrichment probably during the early stages of hydrothermal alteration of the oceanic basalts. The N-d15N modeling for samples from Sites 801 and 1149 (n=39) shows that the secondary N may come from (1) the sedimentary N in the intercalated sediments and possibly overlying sediments via fluid-sediment/rock interaction, and (2) degassed mantle N2 in seawater via alteration-related abiotic reduction processes. For all Site 801 samples, weak correlation of N and K2O contents indicates that the siting of N in potassic alteration phases strongly depends on N availability and is possibly influenced by highly heterogeneous temperature and redox conditions during hydrothermal alteration. The upper 470-m AOC recovered by ODP Legs 129 and 185 delivers approximately 800 kg/km N annually into the Mariana margin. If the remaining less-altered oceanic crust (assuming 6.5 km, mostly dikes and gabbros) has MORB-like N of 1.5 ppm, the entire oceanic crust transfers 5100 kg/km N annually into that trench. This N input flux is twice as large as the annual N input of 2500 kg/km in seafloor sediments subducting into the same margin, demonstrating that the N input in oceanic crust, and its isotopic consequences, must be considered in any assessment of convergent margin N flux.