974 resultados para neuropsychiatric disturbances


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a habitat undergoes change, the first response of an individual is often behavioural adjustment. This immediate response can determine whether the population will survive or not, as behavioural flexibility gives time for genetic changes to arise later on. Habitat changes that alter reproductive behaviours can have long-lasting effects on populations. If the selective regime has changed under the new conditions, mate choice cues may no longer reliably reflect an individual s quality. Thus, animals have to be able to adjust their reproductive behaviours to the local conditions. The aim of my thesis was to discuss if and how animals are able to respond to rapid anthropogenic environmental change, and to study the mechanisms of the responses and the evolutionary consequences. The main focus was on the effects of human-induced eutrophication on the reproductive behaviour of fishes. Eutrophication is the result of increased nutrient input and can cause dense underwater vegetation and algal blooms. I used fishes from two very different ecosystems as model species, the Baltic Sea threespine stickleback (Gasterosteus aculeatus) and the desert goby (Chlamydogobius eremius), an endemic species of the Lake Eyre region in Central Australia. I investigated the effects of increased habitat complexity on courtship behaviour and the possibility of local differentiation in courtship and nest building behaviour depending on the level eutrophication in the habitat of origin. Furthermore, I observed the effect of turbidity on stickleback nest building behaviour. The results show that threespine stickleback males, which were born in areas that have been eutrophied for decades, court females at a higher intensity than males from clear water areas. Similarly, male desert gobies increased their courtship effort in dense vegetation. Intense courtship could be an adjustment to reduced visibility and lowered predation risk in the densely vegetated sites. However, there were no clear differences in nest building between males from clear and eutrophied areas under standardized conditions. This was expected as Baltic Sea sticklebacks prefer to nest under vegetation cover and are fairly rigid in adjusting their nest characteristics. Nest building was affected by increased turbidity: males built smaller nests with a larger nest entrance in turbid water. The large variation in the magnitude of phytoplankton blooms may require a rapid adjustment of the optimal nest structure to the current conditions. This thesis highlights the complex interactions that are set- off by human-induced changes in habitats and are followed by the immediate behavioural responses. It also encourages more research to tease apart the phenotypic and genetic components of the observed behavioural differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Polar corona is often explored to find the energy source for the acceleration of the fast solar wind. Earlier observations show omni-presence of quasi-periodic disturbances, traveling outward, which is believed to be caused by the ubiquitous presence of outward propagating waves. These waves, mostly of compressional type, might provide the additional momentum and heat required for the fast solar wind acceleration. It has been conjectured that these disturbances are not due to waves but high speed plasma outflows, which are difficult to distinguish using the current available techniques. Aims. With the unprecedented high spatial and temporal resolution of AIA/SDO, we search for these quasi-periodic disturbances in both plume and interplume regions of the polar corona. We investigate their nature of propagation and search for a plausible interpretation. We also aim to study their multi-thermal nature by using three different coronal passbands of AIA. Methods. We chose several clean plume and interplume structures and studied the time evolution of specific channels by making artificial slits along them. Taking the average across the slits, space-time maps are constructed and then filtration techniques are applied to amplify the low-amplitude oscillations. To suppress the effect of fainter jets, we chose wider slits than usual. Results. In almost all the locations chosen, in both plume and interplume regions we find the presence of propagating quasi-periodic disturbances, of periodicities ranging from 10-30 min. These are clearly seen in two channels and in a few cases out to very large distances (approximate to 250 `') off-limb, almost to the edge of the AIA field of view. The propagation speeds are in the range of 100-170 km s(-1). The average speeds are different for different passbands and higher in interplume regions. Conclusions. Propagating disturbances are observed, even after removing the effects of jets and are insensitive to changes in slit width. This indicates that a coherent mechanism is involved. In addition, the observed propagation speed varies between the different passpands, implying that these quasi-periodic intensity disturbances are possibly due to magneto-acoustic waves. The propagation speeds in interplume region are higher than in the plume region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is based on four static molds using nozzles of different port diameter, port angle, and immersion depth. It has been observed that the meniscus is wavy. The wave amplitude shows a parabolic variation with the nozzle exit velocity. The dimensionless amplitude is found to vary linearly with the Froude number. Vortex formation and bubble entrainment by the wave occurs at the meniscus beyond a critical flow rate, depending upon the nozzle configuration, immersion depth, and the mold aspect ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sampling disturbance is unavoidable and hence the laboratory testing most often is on partially disturbed samples. This paper deals with the development of a simple method to assess degree of sample disturbance from the prediction of yield stress due to cementation and comparison of yield stress in compression of partially disturbed sample with reference to a predicted compression path of the clay devoid of any mechanical disturbance. The method uses simple parameters which are normally determined in routine investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vortex dislocations in wake-type flow induced by three types of spanwise disturbances superimposed on an upstream velocity profile are investigated by direct numerical simulations. Three distinct modes of vortex dislocations and flow transitions have been found. A local spanwise exponential decay disturbance leads to the appearance of a twisted chainlike mode of vortex dislocation. A stepped spanwise disturbance causes a streamwise periodic spotlike mode of vortex dislocation. A spanwise sinusoidal wavy disturbance with a moderate waviness causes a strong unsteadiness of wake behavior. This unsteadiness starts with a systematic periodic mode of vortex dislocation in the spanwise direction followed by the spanwise vortex shedding suppressed completely with increased time and the near wake becoming a steady shear flow. Characteristics of these modes of vortex dislocation and complex vortex linkages over the dislocation, as well as the corresponding dynamic processes related to the appearance of dislocations, are described by examining the variations of vortex lines and vorticity distribution. The nature of the vortex dislocation is demonstrated by the substantial vorticity modification of the spanwise vortex from the original spanwise direction to streamwise and vertical directions, accompanied by the appearance of noticeable vortex branching and complex vortex linking, all of which are produced at the locations with the biggest phase difference or with a frequency discontinuity between shedding cells. The effect of vortex dislocation on flow transition, either to an unsteady irregular vortex flow or suppression of the Kaacutermaacuten vortex shedding making the wake flow steady state, is analyzed. Distinct similarities are found in the mechanism and main flow phenomena between the present numerical results obtained in wake-type flows and the experimental-numerical results of cylinder wakes reported in previous studies.