981 resultados para neuromuscular transmission disorders
Resumo:
INTRODUCTION: The ultrastructure of venous valves and walls in chronic venous disease was investigated. METHODS: Consecutive patients were categorised into one of three groups (group A: patients with C1 venous disease in accordance with CEAP (Clinical severity, Etiology, Anatomy, Pathophysiology); group B: C2 and C3; group C: C4, C5 and C6). The terminal or preterminal valve and adjacent vessel wall was harvested from the great saphenous vein. Sections were examined with a transmission electron microscope. The volumes of elastin and of collagen per unit surface area of valve were assessed, as well as the surface endothelium of valve and vessel wall. RESULTS: The study population consisted of 17 patients. The elastin ratio was analysed by means of stereology. Mean values were: in group A, 0.45 μm3/m2; in group B, 0.67 μm3/m2; in group C, 0.97 μm3/m2. The ratio was similar for collagen (A, 15.7 μm3/m2; B, 26.8 μm3/m2; C, 30.1 μm3/m2). Surface analysis of the valve endothelium and the adjacent vessel wall endothelium showed a trend towards increasing damage with more severe disease. CONCLUSIONS: With progression of venous disease, the valve elastin content, assessed morphologically, seems to increase, and the endothelium of the venous valve and the vein wall tend to show more damage.
Resumo:
The observation of high frequencies of certain inherited disorders in the population of Saguenay–Lac Saint Jean can be explained in terms of the variance and the correlation of effective family size (EFS) from one generation to the next. We have shown this effect by using the branching process approach with real demographic data. When variance of EFS is included in the model, despite its profound effect on mutant allele frequency, any mutant introduced in the population never reaches the known carrier frequencies (between 0.035 and 0.05). It is only when the EFS correlation between generations is introduced into the model that we can explain the rise of the mutant alleles. This correlation is described by a c parameter that reflects the dependency of children’s EFS on their parents’ EFS. The c parameter can be considered to reflect social transmission of demographic behavior. We show that such social transmission dramatically reduces the effective population size. This could explain particular distributions in allele frequencies and unusually high frequency of certain inherited disorders in some human populations.
Resumo:
The embryonic period of motoneuron programmed cell death (PCD) is marked by transient motor axon branching, but the role of neuromuscular synapses in regulating motoneuron number and axonal branching is not known. Here, we test whether neuromuscular synapses are required for the quantitative association between reduced skeletal muscle contraction, increased motor neurite branching, and increased motoneuron survival. We achieved this by comparing agrin and rapsyn mutant mice that lack acetylcholine receptor (AChR) clusters. There were significant reductions in nerve-evoked skeletal muscle contraction, increases in intramuscular axonal branching, and increases in spinal motoneuron survival in agrin and rapsyn mutant mice compared with their wild-type littermates at embryonic day 18.5 (E18.5). The maximum nerve-evoked skeletal muscle contraction was reduced a further 17% in agrin mutants than in rapsyn mutants. This correlated to an increase in motor axon branch extension and number that was 38% more in agrin mutants than in rapsyn mutants. This suggests that specializations of the neuromuscular synapse that ensure efficient synaptic transmission and muscle contraction are also vital mediators of motor axon branching. However, these increases in motor axon branching did not correlate with increases in motoneuron survival when comparing agrin and rapsyn mutants. Thus, agrin-induced synaptic specializations are required for skeletal muscle to effectively control motoneuron numbers during embryonic development. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Background: Quality of life and well-being are frequently restricted in adults with neuromuscular disorders. As such, identification of appropriate interventions is imperative. Objective: The objective of this paper was to systematically review and critically appraise quantitative studies (RCTs, controlled trials and cohort studies) of psychosocial interventions designed to improve quality of life and well-being in adults with neuromuscular disorders. Method: A systematic review of the published and unpublished literature was conducted. Studies meeting inclusion criteria were appraised using a validated quality assessment tool and results presented in a narrative synthesis. Results: Out of 3,136 studies identified, ten studies met criteria for inclusion within the review. Included studies comprised a range of interventions including: cognitive behavioural therapy, dignity therapy, hypnosis, expressive disclosure, gratitude lists, group psychoeducation and psychologically informed rehabilitation. Five of the interventions were for patients with Amyotrophic Lateral Sclerosis (ALS). The remainder were for patients with post-polio syndrome, muscular dystrophies and mixed disorders, such as Charcot-Marie-Tooth disease, myasthenia gravis and myotonic dystrophy. Across varied interventions and neuromuscular disorders, seven studies reported a short-term beneficial effect of intervention on quality of life and well-being. Whilst such findings are encouraging, widespread issues with the methodological quality of these studies significantly compromised the results. Conclusion: There is no strong evidence that psychosocial interventions improve quality of life and well-being in adults with neuromuscular disorders, due to a paucity of high quality research in this field. Multi-site, randomised controlled trials with active controls, standardised outcome measurement and longer term follow-ups are urgently required.
Resumo:
With interest we read the article by Khosroshahi et al. about a novel method for quantification of left ventricular hypertrabeculation/noncompaction (LVHT) using two-dimensional echocardiography in children (1). We appreciate their efforts to contribute to an improvement and unification of echocardiographic diagnostic criteria for LVHT, which is urgently needed. Concerning their proposed method, we have the following questions and concerns:
Resumo:
With interest we read the article by Khosroshahi et al. about a novel method for quantification of left ventricular hypertrabeculation/noncompaction (LVHT) using two-dimensional echocardiography in children (1). We appreciate their efforts to contribute to an improvement and unification of echocardiographic diagnostic criteria for LVHT, which is urgently needed. Concerning their proposed method, we have the following questions and concerns:
Resumo:
Key points • The clinical aims of MR spectroscopy (MRS) in seizure disorders are to help identify, localize and characterize epileptogenic foci. • Lateralizing MRS abnormalities in temporal lobe epilepsy (TLE) may be used clinically in combination with structural and T2 MRI measurements together with other techniques such as EEG, PET and SPECT. • Characteristic metabolite abnormalities are decreased N-acetylaspartate (NAA) with increased choline (Cho) and myoinositol (mI) (short-echo time). • Contralateral metabolite abnormalities are frequently seen in TLE, but are of uncertain significance. • In extra-temporal epilepsy, metabolite abnormalities may be seen where MR imaging (MRI) is normal; but may not be sufficiently localized to be useful clinically. • MRS may help to characterize epileptogenic lesions visible on MRI (aggressive vs. indolent neoplastic, dysplasia). • Spectral editing techniques are required to evaluate specific epilepsy-relevant metabolites (e.g. -aminobutyric acid (GABA)), which may be useful in drug development and evaluation. • MRS with phosphorus (31P) and other nuclei probe metabolism of epilepsy, but are less useful clinically. • There is potential for assessing the of drug mode of action and efficacy through 13C carbon metabolite measurements, while changes in sodium homeostasis resulting from seizure activity may be detected with 23Na MRS.
Resumo:
Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC) in dopamine neurons of the substantia nigra. This augmentation was largely due to dopamine release from 5-HT terminals. Selective optogenetic stimulation of 5-HT terminals evoked dopamine release, producing D2-receptor-mediated IPSCs following treatment with L-DOPA. In the dorsal raphe, L-DOPA produced a long-lasting depression of the 5-HT1A-receptor-mediated IPSC in 5-HT neurons. When D2 receptors were expressed in the dorsal raphe, application of L-DOPA resulted in a D2-receptor-mediated IPSC. Thus, treatment with L-DOPA caused ectopic dopamine release from 5-HT terminals and a loss of 5-HT-mediated synaptic transmission.
Resumo:
Previous studies have shown that opioid transmission plays an important role in learning and memory. However, little is known about the course of opiate-associated learning and memory deficits after cessation of chronic opiate use in a behavioral animal m
Resumo:
Pompe disease has resisted enzyme replacement therapy with acid α-glucosidase (GAA), which has been attributed to inefficient cation-independent mannose-6-phosphate receptor (CI-MPR) mediated uptake. We evaluated β2-agonist drugs, which increased CI-MPR expression in GAA knockout (KO) mice. Clenbuterol along with a low-dose adeno-associated virus vector increased Rotarod latency by 75% at 4 wk, in comparison with vector alone (P<2×10(-5)). Glycogen content was lower in skeletal muscles, including soleus (P<0.01), extensor digitorum longus (EDL; P<0.001), and tibialis anterior (P<0.05) following combination therapy, in comparison with vector alone. Glycogen remained elevated in the muscles following clenbuterol alone, indicating an adjunctive effect with gene therapy. Elderly GAA-KO mice treated with combination therapy demonstrated 2-fold increased wirehang latency, in comparison with vector or clenbuterol alone (P<0.001). The glycogen content of skeletal muscle decreased following combination therapy in elderly mice (P<0.05). Finally, CI-MPR-KO/GAA-KO mice did not respond to combination therapy, indicating that clenbuterol's effect depended on CI-MPR expression. In summary, adjunctive β2-agonist treatment increased CI-MPR expression and enhanced efficacy from gene therapy in Pompe disease, which has implications for other lysosomal storage disorders that involve primarily the brain.
Resumo:
Male infertility affects one man in twenty and a genetic basis seems likely in at least 30% of those men. Genetic regulation of fertility involves the inter-related processes of testicular development, spermatogenesis (involving germ cell mitosis, meiosis and spermatid maturation), and their endocrine and paracrine regulation. In regard to spermatogenesis, particular attention has been given to the Yq11 region, where some spermatogenesis genes ('azoospermia factors') appear to be located. Several candidate genes have been identified but have not been shown to have a defined or essential role in spermatogenesis. Microdeletions of Yq11 are found in approximately 15% of azoospermic or severely oligospermic men. The complexity of the genetic control of male fertility is demonstrated by the evidence for genes involved in spermatogenesis and sexual differentiation on the X chromosome and autosomes. Better understanding of the genetic regulation of normal spermatogenesis will provide new probes for clinical studies; however, at present the majority of spermatogenic failure remains without an identified genetic linkage. The advent of intracytoplasmic sperm injection permits fertility in many previously sterile men and presents the possibility of their transmission of infertility; appropriate counselling is required.
Resumo:
Muscarinic acetylcholine receptors (mAChRs) provide viable targets for the treatment of multiple central nervous system disorders. We have used cheminformatics and medicinal chemistry to develop new, highly selective M4 allosteric potentiators. VU10010, the lead compound, potentiates the M4 response to acetylcholine 47-fold while having no activity at other mAChR subtypes. This compound binds to an allosteric site on the receptor and increases affinity for acetylcholine and coupling to G proteins. Whole-cell patch clamp recordings revealed that selective potentiation of M4 with VU10010 increases carbachol-induced depression of transmission at excitatory but not inhibitory synapses in the hippocampus. The effect was not mimicked by an inactive analog of VU10010 and was absent in M4 knockout mice. Selective regulation of excitatory transmission by M4 suggests that targeting of individual mAChR subtypes could be used to differentially regulate specific aspects of mAChR modulation of function in this important forebrain structure.
Resumo:
To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges.
Resumo:
N'-coumaroyl spermidine (NlCSpd) is a plant derived chemical which is proposed to belong to a class of low molecular weight neuroactive substances called phenolic polyamines. NlCSpd is stnicturally similar to glutamate receptor blocking toxins found in certain spiders and wasps, such as JSTX-3 and NSTX-3 found in Nephila spiders. The goal of the present study was to determine if plant-derived phenolic polyamines act like other structurally related chemicals found in Arthropod venoms, such as JSTX-3, and whether they can be classified in the same pharmacological group as the spider and wasp toxins. A comparison was made to determine the relative potencies of various phenolic polyamines fi-om plants and insect venoms. This comparison was done by measuring the effect of various concentrations ofNlCSpd on the amplitude of excitatory postsynaptic potentials (EPSPs) elicited in muscle of the crayfish Proccanbarus clarkii. NlCSpd was also tested on L-glutamate induced potentials to determine if a postsynaptic component to sj^naptic block occurs. NlCSpd and an analogue with an a longer polyamine chain, NlCSpm, blocked EPSPs in a dose dependent manner, NlCSpd having an IC50 of lOOnM. NlCSpd also blocked L-glutamate induced potentials. The two main components of the NlCSpd molecule alone are insufficient for activity. NlCSpd acts postsynaptically by interfering with crayfish glutamatergic synaptic transmission, likely blocking glutamate receptors by interacting with the same site(s) as other phenolic polyamines. Certain moieties on the polyamines molecule are necessary for activity while others are not.