820 resultados para net ecosystem exchange
Resumo:
Boreal peatlands contain approximately one third of the global soil carbon and are considered net sinks of atmospheric CO2. Water level position is one of the main regulators of CO2 fluxes in northern peatlands because it controls both the thickness of the aerobic layer in peat and plant communities. However, little is known about the role of different plant functional groups and their possible interaction with changing water level in boreal peatlands with regard to CO2 cycling. Climate change may also accelerate changes in hydrological conditions, changing both aerobic conditions and plant communities. To help answer these questions, this study was conducted at a mesocosm facility in Northern Michigan where the aim was to experimentally study the effects of water levels, plant functional groups (sedges, shrubs and mosses) and the possible interaction of these on the CO2 cycle of a boreal peatland ecosystem. The results indicate that Ericaceous shrubs are important in the boreal peatland CO2 cycle. The removal of these plants decreased ecosystem respiration, gross ecosystem production and net ecosystem exchange rates, whereas removing sedges did not show any significant differences in the flux rates. The water level did not significantly affect the flux rates. The amount of aboveground sedge biomass was higher in the low water level sedge treatment plots compared to the high water level sedge plots, possibly because the lowered water level and the removal of Ericaceae released nutrients for sedges to use up.
Resumo:
Although freshwater wetlands are among the most productive ecosystems on Earth, little is known of carbon dioxide (CO2) exchange in low latitude wetlands. The Everglades is an extensive, oligotrophic wetland in south Florida characterized by short- and long-hydroperiod marshes. Chamber-based CO2 exchange measurements were made to compare the marshes and examine the roles of primary producers, seasonality, and environmental drivers in determining exchange rates. Low rates of CO2 exchange were observed in both marshes with net ecosystem production reaching maxima of 3.77 and 4.28 μmol CO2 m−2 s−1 in short- and long-hydroperiod marshes, respectively. Fluxes of CO2 were affected by seasonality only in the short-hydroperiod marsh, where flux rates were significantly lower in the wet season than in the dry season. Emergent macrophytes dominated fluxes at both sites, though this was not the case for the short-hydroperiod marsh in the wet season. Water depth, a factor partly under human control, significantly affected gross ecosystem production at the short-hydroperiod marsh. As Everglades ecosystem restoration proceeds, leading to deeper water and longer hydroperiods, productivity in short-hydroperiod marshes will likely be more negatively affected than in long-hydroperiod marshes. The Everglades stand in contrast to many freshwater wetlands because of ecosystem-wide low productivity rates.
Resumo:
Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Natural methane (CH4) emissions from wet ecosystems are an important part of today's global CH4 budget. Climate affects the exchange of CH4 between ecosystems and the atmosphere by influencing CH4 production, oxidation, and transport in the soil. The net CH4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH4 emissions for different ecosystems: northern peatlands (45°–90° N), naturally inundated wetlands (60° S–45° N), rice agriculture and wet mineral soils. Mineral soils are a potential CH4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003–2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a~significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH4 over the period 1990–2008. Over the whole period we infer an increase of global ecosystem CH4 emissions of +1.11 Tg CH4 yr−1, not considering potential additional changes in wetland extent. The increase in simulated CH4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long-term decline of the atmospheric CH4 growth rate from 1990 to 2006 cannot be fully explained with the simulated ecosystem emissions. However, these emissions show an increasing trend of +3.62 Tg CH4 yr−1 over 2005–2008 which can partly explain the renewed increase in atmospheric CH4 concentration during recent years.
Resumo:
Exchange rate movements affect exports in two ways -- its depreciation and its variability (risk). A depreciation raises exports, but the associated exchange rate risk could offset that positive effect. The present paper investigates the net effect for eight Asian countries using a dynamic conditional correlation bivariate GARCH-M model that simultaneously estimates time varying correlation and exchange rate risk. Depreciation encourages exports, as expected, for most countries, but its contribution to export growth is weak. Exchange rate risk contributes to export growth in Malaysia and the Philippines, leading to positive net effects. Exchange rate risk generates a negative effect for six of the countries, resulting in a negative net effect in Indonesia, Japan, Singapore, Taiwan and a zero net effect in Korea and Thailand. Since the negative effect of exchange rate risk may offset, or even dominate, positive contributions from depreciation, policy makers need to reduce exchange rate fluctuation along with and possibly before efforts to depreciate the currency.
Resumo:
Climate warming is expected to differentially affect CO2 exchange of the diverse ecosystems in the Arctic. Quantifying responses of CO2 exchange to warming in these ecosystems will require coordinated experimentation using standard temperature manipulations and measurements. Here, we used the International Tundra Experiment (ITEX) standard warming treatment to determine CO2 flux responses to growing-season warming for ecosystems spanning natural temperature and moisture ranges across the Arctic biome. We used the four North American Arctic ITEX sites (Toolik Lake, Atqasuk, and Barrow [USA] and Alexandra Fiord [Canada]) that span 10° of latitude. At each site, we investigated the CO2 responses to warming in both dry and wet or moist ecosystems. Net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem photosynthesis (GEP) were assessed using chamber techniques conducted over 24-h periods sampled regularly throughout the summers of two years at all sites. At Toolik Lake, warming increased net CO2 losses in both moist and dry ecosystems. In contrast, at Atqasuk and Barrow, warming increased net CO2 uptake in wet ecosystems but increased losses from dry ecosystems. At Alexandra Fiord, warming improved net carbon uptake in the moist ecosystem in both years, but in the wet and dry ecosystems uptake increased in one year and decreased the other. Warming generally increased ER, with the largest increases in dry ecosystems. In wet ecosystems, high soil moisture limited increases in respiration relative to increases in photosynthesis. Warming generally increased GEP, with the notable exception of the Toolik Lake moist ecosystem, where warming unexpectedly decreased GEP >25%. Overall, the respiration response determined the effect of warming on ecosystem CO2 balance. Our results provide the first multiple-site comparison of arctic tundra CO2 flux responses to standard warming treatments across a large climate gradient. These results indicate that (1) dry tundra may be initially the most responsive ecosystems to climate warming by virtue of strong increases in ER, (2) moist and wet tundra responses are dampened by higher water tables and soil water contents, and (3) both GEP and ER are responsive to climate warming, but the magnitudes and directions are ecosystem-dependent.
Resumo:
1. Exchange of carbon dioxide (CO2) from soils can contribute significantly to the global warming potential (GWP) of agro-ecosystems. Due to variations in soil type, climatic onditions and land management practices, exchange of CO2 can differ markedly in different geographical locations. The food industry is developing carbon footprints for their products necessitating integration of CO2 exchange from soils with other CO2 emissions along the food chain. It may be advantageous to grow certain crops in different geographical locations to minimize CO2 emissions from the soil, and this may provide potential to offset other emissions in the food chain, such as transport. 2. Values are derived for the C balance of soils growing horticultural crops in the UK, Spain and Uganda. Net ecosystem production (NEP) is firstly calculated from the difference in net primary production (NPP) and heterotrophic soil respiration (Rh). Both NPP and Rh were estimated from intensive direct field measurements. Secondly, net biome production (NBP) is calculated by subtracting the crop biomass from NEP to give an indication of C balance. The importance of soil exchange is discussed in the light of recent discussions on carbon footprints and within the context of food life-cycle assessment (LCA). 3. The amount of crop relative to the biomass and the Rh prevailing in the different countries were the dominant factors influencing the magnitude of NEP and NBP. The majority of the biomass for lettuce Lactuca sativa and vining peas Pisum sativum, was removed from the field as crop; therefore, NEP and NBP were mainly negative. This was amplified for lettuces grown in Uganda (-16·5 and -17 t C ha-1 year-1 compared to UK and Spain -4·8 to 7·4 and -5·1 to 6·3 t C ha-1 year-1 for NEP and NBP, respectively) where the climate elevated Rh. 4. Synthesis and applications. This study demonstrates the importance of soil emissions in the overall life cycle of vegetables. Variability in such emissions suggests that assigning a single value to food carbon footprints may not be adequate, even within a country. Locations with high heterotrophic soil respiration, such as Spain and Uganda (21·9 and 21·6 t C ha-1 year-1, respectively), could mitigate the negative effects of climate on the C costs of crop production by growth of crops with greater returns of residue to the soil. This would minimize net CO2 emissions from these agricultural ecosystems.
Resumo:
Acidification of seawater owing to oceanic uptake of atmospheric CO2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (n=3) incubated in continuous-flow mesocosms subject to future seawater conditions. The calcifying community was dominated by the coral Montipora capitata. Daily average community calcification or Net Ecosystem Calcification (NEC=CaCO3 production - dissolution) was positive at 3.3 mmol CaCO3 m-2 h-1 under ambient seawater pCO2 conditions as opposed to negative at -0.04 mmol CaCO3 m-2 h-1 under seawater conditions of double the ambient pCO2. These experimental results provide support for the conclusion that some net calcifying communities could become subject to net dissolution in response to anthropogenic ocean acidification within this century. Nevertheless, individual corals remained healthy, actively calcified (albeit slower than at present rates), and deposited significant amounts of CaCO3 under the prevailing experimental seawater conditions of elevated pCO2.
Resumo:
This study tests the hypothesis that potted sweet orange plants show a significant variation in photosynthesis over seasonal and diurnal cycles. even in well-hydrated conditions. This hypothesis was tested by measuring diurnal variations in leaf gas exchange, chlorophyll fluorescence, leaf water potential, and the responses of CO(2) assimilation to increasing air CO(2) concentrations in 1-year-old `Valencia` sweet orange scions grafted onto `Cleopatra` mandarin rootstocks during the winter and summer seasons in a subtropical climate. In addition, diurnal leaf gas exchange was evaluated under controlled conditions, with constant environmental conditions during both winter and summer. In relation to our hypothesis, a greater rate of photosynthesis is found during the summer compared to the winter. Reduced photosynthesis during winter was induced by cool night conditions, as the diurnal fluctuation of environmental conditions was not limiting. Low air and soil temperatures caused decreases in the stomatal conductance and in the rates of the biochemical reactions underlying photosynthesis (ribulose-1,5-bisphosphate (RuBP) carboxylation and RuBP regeneration) during the winter compared to the values obtained for those markers in the Summer. Citrus photosynthesis during the summer was riot impaired by biochemical or photochemical reactions. as CO(2) assimilation was only limited by stomatal conductance due to high leaf-to-air vapor pressure difference (VPD) during the afternoon. During the winter, the reduction in photosynthesis during the afternoon Was Caused by decreases in RuBP regeneration and stomatal conductance, which are both precipitated by low night temperature. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis x urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (TBCA), bole growth, and net ecosystem production (NEP). Replicate plots within a single plantation were established at the midpoint of the rotation (end of year 3), with treatments of no additional fertilization or irrigation, heavy fertilization (to remove any nutrient limitation), irrigation (to remove any water limitation), and irrigation plus fertilization. Rainfall was unusually high in the first year (1769mm) of the experiment, and control plots had high rates of GPP (6.64 kg C m(-2) year(-1)), TBCA (2.14 kg C m(-2) year(-1)), and bole growth (1.81 kg C m(-2) year). Irrigation increased each of these rates by 15-17%. The second year of the experiment had average rainfall (1210 mm), and lower rainfall decreased production in control plots by 46% (GPP), 52% (TBCA), and 40% (bole growth). Fertilization treatments had neglible effects. The response to irrigation was much greater in the drier year, with irrigated plots exceeding the production in control plots by 83% (GPP), 239% (TBCA), and 24% (bole growth). Even though the rate of irrigation ensured no water limitation to tree growth, the high rainfall year showed higher production in irrigated plots for both GPP (38% greater than in drier year) and bole growth (23% greater). Varying humidity and supplies of water led to a range in NEP of 0.8-2.7 kg C m(-2) year. This difference between control and irrigated treatments, combined with differences between drier and wetter years, indicated a strong response of these Eucalyptus trees to both water supply and atmospheric humidity during the dry season. The efficiency of converting light energy into fixed carbon ranged from a low of 0.027 mol C to a high of 0.060 mol C per mol of absorbed photosynthetically active radiation (APAR), and the efficiency of bolewood production ranged from 0.78 to 1.98 g wood per MJ of APAR. Irrigation increased the efficiency of wood production per unit of water used from 2.55 kg wood m(-3) in the rainfed plot to 3.51 kg m(-3) in irrigated plots. Detailed information on the response of C budgets to environmental conditions and resource supplies will be necessary for accurate predictions of plantation yields across years and landscapes. (V) 2007 Elsevier B.V. All rights reserved.
Resumo:
This thesis is the result of an elaborate study on the mixed layer depth (MLD) and the various oceanic environmental factors controlling it in the Arabian Sea examining its predictability on annual and short term basis. To accomplish this, the study area between 100 — 250 N latitudes and 600 — 750 E longitudes in the Arabian Sea is divided into 8 subareas of 50 quadrangles. The distribution of monthly means of the surface wind field, net heat exchange mKi868€%WTmN¥tWMWF3UH9 (SST) over each subarea in the annual cycle is examined. The corresponding wind (mechanical) and convective mixing values are computed and presented along with the observed mean MLD for the subareas in the annual cycle. Effects of advection due to surface currents and surface divergence (convergence and divergence) for these subareas are examined for correlating the MLD variations. A representative time series data from typical deep water station under southwest monsoonal forcing is analysed for the spectral components to estimate the amplitude perturbations on the mean MLD variation
Resumo:
Large-scale bottom-up estimates of terrestrial carbon fluxes, whether based on models or inventory, are highly dependent on the assumed land cover. Most current land cover and land cover change maps are based on satellite data and are likely to be so for the foreseeable future. However, these maps show large differences, both at the class level and when transformed into Plant Functional Types (PFTs), and these can lead to large differences in terrestrial CO2 fluxes estimated by Dynamic Vegetation Models. In this study the Sheffield Dynamic Global Vegetation Model is used. We compare PFT maps and the resulting fluxes arising from the use of widely available moderate (1 km) resolution satellite-derived land cover maps (the Global Land Cover 2000 and several MODIS classification schemes), with fluxes calculated using a reference high (25 m) resolution land cover map specific to Great Britain (the Land Cover Map 2000). We demonstrate that uncertainty is introduced into carbon flux calculations by (1) incorrect or uncertain assignment of land cover classes to PFTs; (2) information loss at coarser resolutions; (3) difficulty in discriminating some vegetation types from satellite data. When averaged over Great Britain, modeled CO2 fluxes derived using the different 1 km resolution maps differ from estimates made using the reference map. The ranges of these differences are 254 gC m−2 a−1 in Gross Primary Production (GPP); 133 gC m−2 a−1 in Net Primary Production (NPP); and 43 gC m−2 a−1 in Net Ecosystem Production (NEP). In GPP this accounts for differences of −15.8% to 8.8%. Results for living biomass exhibit a range of 1109 gC m−2. The types of uncertainties due to land cover confusion are likely to be representative of many parts of the world, especially heterogeneous landscapes such as those found in western Europe.
Resumo:
The impacts of current and future changes in climate have been investigated for Irish vegetation. Warming has been observed over the last two decades, with impacts that are also strongly influenced by natural oscillations of the surrounding ocean, seen as fluctuations in the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. Satellite observations show that vegetation greenness increases in warmer years, a feature mirrored by increases in net ecosystem production observed for a grassland and a plantation forest. An ensemble of general circulation model simulations of future climates indicate temperature rises over the twenty-first century ranging from 1°C to 7°C, depending on future scenarios of greenhouse gas emissions. Net primary production is simulated to increase under all scenarios, due to the positive impacts of rising temperature, a modest rise of precipitation and rising carbon dioxide concentrations. In an optimistic scenario of reducing future emissions, CO2 concentration is simulated to flatten from about 2070, although temperatures continue to increase. Under this scenario Ireland could become a source of carbon, whereas under all other emission scenarios Ireland is a sink for carbon that may increase by up to three-fold over the twenty-first century. A likely and unavoidable impact of changing climate is the arrival of alien plant species, which may disrupt ecosystems and exert negative impacts on native biodiversity. Alien species arrive continually, with about 250 dated arrivals in the twentieth century. A simulation model indicates that this rate of alien arrival may increase by anything between two and ten times, dependent on the future climatic scenario, by 2050. Which alien species may become severely disruptive is, however, not known.
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover, composition and 5 height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, 10 and are compared to scores based on the temporal or spatial mean value of the observations and a “random” model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), and the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global 15 vegetation models (DGVMs). SDBM reproduces observed CO2 seasonal cycles, but its simulation of independent measurements of net primary production (NPP) is too high. The two DGVMs show little difference for most benchmarks (including the interannual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified 20 several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change 25 impacts and feedbacks.