908 resultados para nano reactors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meibum is believed to be the major source of tear film lipids, which are vital in the prevention of excess evaporation of the aqueous phase. The complete lipid composition of meibum has yet to be established. While earlier studies reported the presence of phospholipids in human meibum, recent mass spectrometric studies have not detected them. In this study we use electrospray ionisation tandem mass spectrometry to investigate the presence of phospholipids in meibum and provide comparison to the phospholipid profile of tears.Lipids were extracted from human meibum and tear samples using standard biphasic methods and analysed by nano-electrospray ionisation tandem mass spectrometry using targeted ion scans. A total of 35 choline-containing phospholipids were identified in meibum and the profile of these was similar to that observed in tears, suggesting tear lipids are derived from meibum. The results shown here highlight the need for a combination of optimised techniques to enable the identification of the large range of lipid classes in meibum. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core-satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core-satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (~48 nm) core surrounded by smaller (~15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a tunable alternating current electrohydrodynamic (ac-EHD) force which drives lateran fluid motion within a few nanometers of an electrode surface. Because the magnitude of this fluid shear force can be tuned externally (e.g., via the application of an ac electric field), it provides a new capability to physically displace weakly (nonspecifically) bound cellular analytes. To demonstrate the utility of the tunable nanoshearing phenomenon, we present data on purpose-built microfluidic devices that employ ac-EHD force to remove nonspecific adsorption of molecular and cellular species. Here, we show that an ac-EHD device containing asymmetric planar and microtip electrode pairs resulted in a 4-fold reduction in nonspecific adsorption of blood cells and also captured breast cancer cells in blood, with high efficiency (approximately 87%) and specificity. We therefore feel that this new capability of externally tuning and manipulating fluid flow could have wide applications as an innovative approach to enhance the specific capture of rare cells such as cancer cells in blood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter. © 2013 Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hybrid nano-urchin structure consisting of spherical onion-like carbon and MnO2 nanosheets is synthesized by a facile and environmentally-friendly hydrothermal method. Lithium-ion batteries incorporating the hybrid nano-urchin anode exhibit reversible lithium storage with superior specific capacity, enhanced rate capability, stable cycling performance, and nearly 100% Coulombic efficiency. These results demonstrate the effectiveness of designing hybrid nano-architectures with uniform and isotropic structure, high loading of electrochemically-active materials, and good conductivity for the dramatic improvement of lithium storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we improve the insulation performance of polymeric nano-dielectrics by using plasma pre-treatment on the filled nanoparticles. Non-equilibrium atmospheric-pressure plasma is employed to modify a commercial type of silane-coated SiO2 nanoparticles. The treated nanoparticles and the synthesized epoxy-based nanocomposites are characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The plasma-treated SiO2 nanoparticles can disperse uniformly and form strong covalent bonds with the molecules of the polymer matrix. Moreover, the electrical insulation properties of the synthesized nanocomposites are investigated. Results show that the nanocomposites with plasma-treated SiO2 nanoparticles obtain improved dielectric breakdown strength and extended endurance under intense electrical ageing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review paper presents historical perspectives, recent advances and future directions in the multidisciplinary research field of plasma nanoscience. The current status and future challenges are presented using a three-dimensional framework. The first and the largest dimension covers the most important classes of nanoscale objects (nanostructures, nanofeatures and nanoassemblies/nanoarchitectures) and materials systems, namely carbon nanotubes, nanofibres, graphene, graphene nanoribbons, graphene nanoflakes, nanodiamond and related carbon-based nanostructures; metal, silicon and other inorganic nanoparticles and nanostructures; soft organic nanomaterials; nano-biomaterials; biological objects and nanoscale plasma etching. In the second dimension, we discuss the most common types of plasmas and plasma reactors used in nanoscale plasma synthesis and processing. These include low-temperature non-equilibrium plasmas at low and high pressures, thermal plasmas, high-pressure microplasmas, plasmas in liquids and plasma–liquid interactions, high-energy-density plasmas, and ionized physical vapour deposition as well as some other plasma-enhanced nanofabrication techniques. In the third dimension, we outline some of the 'Grand Science Challenges' and 'Grand Socio-economic Challenges' to which significant contributions from plasma nanoscience-related research can be expected in the near future. The urgent need for a stronger focus on practical, outcome-oriented research to tackle the grand challenges is emphasized and concisely formulated as from controlled complexity to practical simplicity in solving grand challenges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional catalyzed thermal CVD of carbon microcoils commonly suffers from poor control of the coil shape and morphology and rarely reaches the nanoscale size range. This article reports on an unconventional Ni-P alloy-catalyzed, high-throughput, highly reproducible CVD of ultra-long carbon coil-like micro- and nano-structures using acetylene precursor at relatively low process temperatures. Helical carbon microcoils with consistently uniform, circular cross-sections and a high degree of crystallinity have been synthesized at 750 °C. A further reduction of the temperature to 650 °C led to the growth of ultra-long (up to several mm) wave-like carbon nanofibers made of two nanowires with the diameters in the 100-200 nm range. The results of the XRD and Raman analysis reveal that the nanofibers feature only a slightly more disordered structure compared to the microcoils. Our results suggest that morphology and structure of the carbon coil-like micro- and nano-structures can be tailored by the appropriate alloying of the catalyst and the choice of the CVD process parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the use of a local order measure to quantify the spatial ordering of a quantum dot array (QDA). By means of electron ground state energy analysis in a quantum dot pair, it is demonstrated that the length scale required for such a measure to characterize the opto-electronic properties of a QDA is of the order of a few QD radii. Therefore, as local order is the primary factor that affects the opto-electronic properties of an array of quantum dots of homogeneous size, this order was quantified through using the standard deviation of the nearest neighbor distances of the quantum dot ensemble. The local order measure is successfully applied to quantify spatial order in a range of experimentally synthesized and numerically generated arrays of nanoparticles. This measure is not limited to QDAs and has wide ranging applications in characterizing order in dense arrays of nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the details of the numerical model used in simulation of self-organization of nano-islands on solid surfaces in plasma-assisted assembly of quantum dot structures. The model includes the near-substrate non-neutral layer (plasma sheath) and a nanostructured solid deposition surface and accounts for the incoming flux of and energy of ions from the plasma, surface temperature-controlled adatom migration about the surface, adatom collisions with other adatoms and nano-islands, adatom inflow to the growing nano-islands from the plasma and from the two-dimensional vapour on the surface, and particle evaporation to the ambient space and the two-dimensional vapour. The differences in surface concentrations of adatoms in different areas within the quantum dot pattern significantly affect the self-organization of the nano-islands. The model allows one to formulate the conditions when certain islands grow, and certain ones shrink or even dissolve and relate them to the process control parameters. Surface coverage by selforganized quantum dots obtained from numerical simulation appears to be in reasonable agreement with the available experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of experimental investigations on the relationship between nanoscale morphology of carbon doped hydrogenated silicon-oxide (SiOCH) low-k films and their electron spectrum of defect states are presented. The SiOCH films have been deposited using trimethylsilane (3MS) - oxygen mixture in a 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) system at variable RF power densities (from 1.3 to 2.6 W/cm2) and gas pressures of 3, 4, and 5 Torr. The atomic structure of the SiOCH films is a mixture of amorphous-nanocrystalline SiO2-like and SiC-like phases. Results of the FTIR spectroscopy and atomic force microscopy suggest that the volume fraction of the SiC-like phase increases from ∼0.2 to 0.4 with RF power. The average size of the nanoscale surface morphology elements of the SiO2-like matrix can be controlled by the RF power density and source gas flow rates. Electron density of the defect states N(E) of the SiOCH films has been investigated with the DLTS technique in the energy range up to 0.6 eV from the bottom of the conduction band. Distinct N(E) peaks at 0.25 - 0.35 eV and 0.42 - 0.52 eV below the conduction band bottom have been observed. The first N(E) peak is identified as originated from E1-like centers in the SiC-like phase. The volume density of the defects can vary from 1011 - 1017 cm-3 depending on specific conditions of the PECVD process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the synthesis, characterization and application of nano zero-valent iron (nZVI). The nZVI was produced by a reduction method and compared with commercial available ZVI powder for Pb2+ removal from aqueous phase. Comparing with commercial ZVI, the laboratory made nZVI powder has a much higher specific surface area. XRD patterns have revealed zero valent iron phases in two ZVI materials. Different morphologies have been observed using SEM and TEM techniques. EDX spectrums revealed even distribution of Pb on surface after reaction. The XPS analysis has confirmed that immobilized lead was present in its zero-valent and bivalent forms. ‘Core-shell’ structure of prepared ZVI was revealed based on combination of XRD and XPS characterizations. In addition, comparing with Fluka ZVI, this lab made nZVI has much higher reactivity towards Pb2+ and within just 15 mins 99.9% removal can be reached. This synthesized nano ZVI material has shown great potential for heavy metal immobilization from waste water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle number concentrations vary significantly with environment and, in this study, we attempt to assess the significance of these differences. Towards this aim, we reviewed 85 papers that have reported particle number concentrations levels at 126 sites covering different environments. We grouped the results into eight categories according to measurement location including: road tunnel, on-road, road-side, street canyon, urban, urban background, rural, and clean background. From these reports, the overall median number concentration for each of the eight site categories was calculated. The eight location categories may be classified into four distinct groups. The mean median particle number locations for these four types were found to be statistically different from each other. Rural and clean background sites had the lowest concentrations of about 3x103 cm-3. Urban and urban background sites showed concentrations that were three times higher (9x103 cm-3). The mean concentration for the street canyon, roadside and on-road measurement sites was 4.6x104 cm-3, while the highest concentrations were observed in the road tunnels (8.6x104 cm-3). This variation is important when assessing human exposure-response for which there is very little data available, making it difficult to develop health guidelines, a basis for national regulations. Our analyses shows that the current levels in environments affected by vehicle emissions are 3 to 28 times higher than in the natural environments. At present, there is no threshold level in response to exposure to ultrafine particles. Therefore, future control and management strategies should target a decrease of these particles in urban environments by more than one order of magnitude to bring them down to the natural background. At present there is a long way to go to achieve this.