994 resultados para muscle fiber


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Morphological and histochemical methods were used to evaluate the myotomal muscle characteristics of pacu (Piaractus mesopotamicus) from hatching to 40 days old. During the larval period, the musculature consisted predominantly of white muscle. White and red muscle mass increased at 10, 20, 30 and 40 days after hatching. The larvae had round muscle fibers with a moderate degree of maturation and central nuclei. In subsequent phases, small and immature fibers were visible near larger and more differentiated fibers. Undifferentiated cells or presumptive myoblasts located in embryogenic zones were visible in the dorsal and ventral regions, and were more evident at 30 and 40 days. The red muscle fibers located in the subdermal region, had oxidative metabolism and slow contraction, whereas the more predominant white muscle fibers had glycolytic metabolism and fast contraction. Our findings indicate that during the initial phases, myotomal muscle growth in pacu occurs by both, muscle fiber hypertrophy and hyperplasia. The analysis of frequency of red and white muscle fibers shows that hyperplastic growth is intense in this period. As the growth rate in adult fish is related to the number of muscle fibers in young fish, extrinsic factors could change the muscle fiber phenotype and influence their ultimate size.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: This study evaluated the effects of growth hormone (GH) on morphology and myogenic regulatory factors (MRF) gene expression in skeletal muscle of rats with ascending aortic stenosis (AAS) induced chronic heart failure.Design: Male 90-100 g Wistar rats were subjected to thoracotomy. AAS was created by placing a stainless-steel clip on the ascending aorta. Twenty five weeks after surgery, rats were treated with daily subcutaneous injections of recombinant human GH (2 mg/kg/day; AAS-GH group) or saline (AAS group) for 14 days. Sham-operated animals served as controls. Left ventricular (LV) function was assessed before and after treatment. IGF-1 serum levels were measured by ELISA. After anesthesia, soleus muscle was frozen in liquid nitrogen. Histological sections were stained with HE and picrosirius red to calculate muscle fiber cross-sectional area and collagen fractional area, respectively. MRF myogenin and MyoD expression was analyzed by reverse transcription PCR.Results: Body weight was similar between groups. AAS and AAS-GH groups presented dilated left atrium, left ventricular (LV) hypertrophy (LV mass index: Control 1.90 +/- 0.15; AAS 3.11 +/- 0.44; AAS-GH 2.94 +/- 0.47 g/kg; p < 0.05 AAS and AAS-GH vs. Control), and reduced LV posterior wall shortening velocity. Soleus muscle fiber area was significantly lower in AAS than in Control and AAS-GH groups; there was no difference between AAS-GH and Control groups. Collagen fractional area was significantly higher in MS than Control; AAS-GH did not differ from both Control and AAS groups. Serum IGF-1 levels decreased in AAS compared to Control. MyoD mRNA was significantly higher in AAS-GH than AAS; there was no difference between AAS-GH and Control groups. Myogenin mRNA levels were similar between groups.Conclusion: In rats with aortic stenosis-induced heart failure, growth hormone administration increases MyoD gene expression above non-treated animal levels, preserves muscular trophism and attenuates interstitial fibrosis. These results suggest that growth hormone may have a potential role as an adjuvant therapy for chronic heart failure. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder characterized by the progressive loss of muscular strength. Mdx mutant mice show a marked deficiency in dystrophin, which was related to muscle membrane stability. The aim of this study was to verify the possible protective anti-inflammatory effect of citrus oil on mdx muscle fibers. Thus, adult male and female mdx mice (014/06-CEEA) were divided into control and citrus-treated. After 60 days of treatment, one ml of blood was collected for creatine kinase (CK) test. Diaphragm, sternomastoideus, anterior tibial and gastrocnemius muscles were removed and processed according to histological routine methods. The observed alterations indicate a direct effect of citrus. Recent studies have improved the diagnosis of muscular diseases but with no definitions of efficient treatments. Intervention with several therapies is important to many patients presenting muscular dystrophy, which enables them to live longer and be more active, while there is no development of gene therapies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Muscle growth in Nile tilapia (Oreochromis niloticus) was studied focusing on histochemical, ultrastructural, and morphometric characteristics of muscle fibers. Based on body length (cm), we studied four groups: G1 = 1.36+/-0.09, G2 = 3.38+/-0.44, G3 = 8.90+/-1.47, and G4 = 28.30+/-3.29 (mean+/-S.D.). All groups showed intense reaction to NADH-TR in subdermal fibers and weak or no reaction in deep layer fibers. In G3 and G4, an intermediate layer was also observed with fibers presenting weak reaction; in G4, groups of fibers with intense reaction were observed in the subdermal region. The myosin ATPase (m-ATPase) activities were acid-stable and alkali-labile in subdermal fibers; most deep layer fibers were alkali-stable and acid-labile. Intermediate fibers were acid-labile and alkali-stable. Two fiber populations were observed near deep muscle layer: one large presenting weak acid- and alkali-stable and the other small alkali-stable.During growth, muscle fiber hypertrophy was more evident in intermediate and white fibers for G3 and G4. However, in these groups, the presence of fiber diameters less than or equal to21 mum suggested that there is still substantial fiber recruitment, confirmed by ultrastructural study, but hypertrophy is the main mechanism contributing to increase in muscular mass. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In a previous study, we showed that the Polybia paulista wasp venom causes strong myonecrosis. This study was undertaken to characterize the myotoxic potency of mastoparan (Polybia-MPII) isolated from venom (0.25 mu g/mu l) and injected in the tibial anterior (TA) muscle (i.m.) of Balb/c mice. The time course of the changes was followed at muscle degenerative (3 and 24 h) and regenerative (3, 7, and 21 days) periods (n = 6) after injection and compared to matched controls by calculation of the percentage of cross-sectional area affected and determination of creatine kinase (CK) activity (n = 10). The results showed that although NIP was strongly myotoxic, its capacity for regeneration was maintained high. Since the extent of tissue damage was not correlated with the CK serum levels, which remained very low, we raised the hypothesis that the enzyme underwent denaturation by the peptide. Evidence suggested that MP induced the death of TA fibers by necrosis and apoptosis and had the sarcolemma as its primordial target. Given its amphiphilic polycationic nature and based on the vast spectrum of functions attributed to the peptide, we suggest that MP interaction with cell membrane impaired the phosphorylation of dystrophin essential for sarcolemma mechanical stability, and disturbed Ca2+ mobilization with obvious implications on sarcoplasmic reticulum and mitochondrial functioning. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The aim of this study was to analyze stable hypertrophied myocardial function and its response to inotropic maneuvers in rats submitted to renovascular hypertension for a 10-week period (RHT group, n=10). Material/Methods: Myocardial performance was studied in isolated left ventricle papillary muscles in isometric contraction under the following conditions: at postrest contraction of 30 seconds (PRC), at extracellular calcium (ECa 2+) chloride concentration of 1.25 and 5.20 mM, and after beta-adrenergic stimulation with 10 -6 M isoproterenol (ISOP). Results: The results were compared with normotensive Wistar controls rats (C group, n=10). In basal condition, resting tension, and contraction time (TPT) were greater, while relaxation time (RT 50) tended to be longer in RHT than C group. PRC and ISOP promoted a similar change in muscle function response intensity (Δ) in both groups. ECa 2+ shift did not change TPT in the C group and decreased TPT in the RHT animals; Δ was different between these groups. RT 50 increased in C and decreased in RHT, both without statistical significance; however, Δ was different. Conclusions: These results suggest that hypertrophied myocardial dysfunction may be attibuted to changes in intracellular calcium cycling. © Med Sci Monit, 2010.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: This study was undertaken to test the hypothesis that diabetes and pregnancy detrimentally affect the normal function of urethral striated muscles in rats, providing a model for additional studies related to urinary incontinence. The aim of this study was to evaluate morphological alterations in the urethral striated muscles of diabetic pregnant rats. Materials and Methods: Twenty female Wistar rats were distributed into four experimental groups of five rats as follows: virgin, pregnant, diabetic virgin, and diabetic pregnant. Diabetes was induced using streptozotocin administration (40 mg/kg i.v.). The rats were lethally anesthetized, and the urethra and vagina were extracted as a unit. Cryostat sections (6 μm thick) were cut and stained with hematoxylin-eosin, and immunohistochemical procedures were performed and subjected to morphological and semi quantitative analysis. Results: The urethral striated muscle from the diabetic pregnant rats presented with the following variations: thinning and atrophy, disorganization and disruption associated with the colocalization of fast and slow fibers and a steady decrease in the proportion of fast vs slow fibers. Conclusion: Diabetes and pregnancy impair the urethral striated muscle and alter its fiber type distribution. © Copyright G. Marini et al., 2011.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Muscle growth mechanisms are controlled by molecular pathways that can be affected by fasting and refeeding. In this study, we hypothesized that short period of fasting followed by refeeding would change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). The aim of this study was to analyze the expression of MyoD, myogenin and myostatin and the muscle growth characteristics in the white muscle of juvenile Nile tilapia during short period of fasting followed by refeeding. Juvenile fish were divided into three groups: (FC) control, feeding continuously for 42. days, (F5) 5. days of fasting and 37. days of refeeding, and (F10) 10. days of fasting and 32. days of refeeding. At days 5 (D5), 10 (D10), 20 (D20) and 42 (D42), fish (n = 14 per group) were anesthetized and euthanized for morphological, morphometric and gene expression analyses. During the refeeding, fasted fish gained weight continuously and, at the end of the experiment (D42), F5 showed total compensatory mass gain. After 5 and 10. days of fasting, a significant increase in the muscle fiber frequency (class 20) occurred in F5 and F10 compared to FC that showed a high muscle fiber frequency in class 40. At D42, the muscle fiber frequency in class 20 was higher in F5. After 5. days of fasting, MyoD and myogenin gene expressions were lower and myostatin expression levels were higher in F5 and F10 compared to FC; at D42, MyoD, myogenin and myostatin gene expression was similar among all groups. In conclusion, this study showed that short periods of fasting promoted muscle fiber atrophy in the juvenile Nile tilapia and the refeeding caused compensatory mass gain and changed the expression of muscle growth-related genes that promote muscle growth. These fasting and refeeding protocols have proven useful for understanding the effects of alternative warm fish feeding strategies on muscle growth-related genes. © 2013.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)