989 resultados para multivariate classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bewildering complexity of cortical microcircuits at the single cell level gives rise to surprisingly robust emergent activity patterns at the level of laminar and columnar local field potentials (LFPs) in response to targeted local stimuli. Here we report the results of our multivariate data-analytic approach based on simultaneous multi-site recordings using micro-electrode-array chips for investigation of the microcircuitary of rat somatosensory (barrel) cortex. We find high repeatability of stimulus-induced responses, and typical spatial distributions of LFP responses to stimuli in supragranular, granular, and infragranular layers, where the last form a particularly distinct class. Population spikes appear to travel with about 33 cm/s from granular to infragranular layers. Responses within barrel related columns have different profiles than those in neighbouring columns to the left or interchangeably to the right. Variations between slices occur, but can be minimized by strictly obeying controlled experimental protocols. Cluster analysis on normalized recordings indicates specific spatial distributions of time series reflecting the location of sources and sinks independent of the stimulus layer. Although the precise correspondences between single cell activity and LFPs are still far from clear, a sophisticated neuroinformatics approach in combination with multi-site LFP recordings in the standardized slice preparation is suitable for comparing normal conditions to genetically or pharmacologically altered situations based on real cortical microcircuitry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a GIS-based multicriteria flood risk assessment and mapping approach applied to coastal drainage basins where hydrological data are not available. It involves risk to different types of possible processes: coastal inundation (storm surge), river, estuarine and flash flood, either at urban or natural areas, and fords. Based on the causes of these processes, several environmental indicators were taken to build-up the risk assessment. Geoindicators include geological-geomorphologic proprieties of Quaternary sedimentary units, water table, drainage basin morphometry, coastal dynamics, beach morphodynamics and microclimatic characteristics. Bioindicators involve coastal plain and low slope native vegetation categories and two alteration states. Anthropogenic indicators encompass land use categories properties such as: type, occupation density, urban structure type and occupation consolidation degree. The selected indicators were stored within an expert Geoenvironmental Information System developed for the State of Sao Paulo Coastal Zone (SIIGAL), which attributes were mathematically classified through deterministic approaches, in order to estimate natural susceptibilities (Sn), human-induced susceptibilities (Sa), return period of rain events (Ri), potential damages (Dp) and the risk classification (R), according to the equation R=(Sn.Sa.Ri).Dp. Thematic maps were automatically processed within the SIIGAL, in which automata cells (""geoenvironmental management units"") aggregating geological-geomorphologic and land use/native vegetation categories were the units of classification. The method has been applied to the Northern Littoral of the State of Sao Paulo (Brazil) in 32 small drainage basins, demonstrating to be very useful for coastal zone public politics, civil defense programs and flood management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topology of real-world complex networks, such as in transportation and communication, is always changing with time. Such changes can arise not only as a natural consequence of their growth, but also due to major modi. cations in their intrinsic organization. For instance, the network of transportation routes between cities and towns ( hence locations) of a given country undergo a major change with the progressive implementation of commercial air transportation. While the locations could be originally interconnected through highways ( paths, giving rise to geographical networks), transportation between those sites progressively shifted or was complemented by air transportation, with scale free characteristics. In the present work we introduce the path-star transformation ( in its uniform and preferential versions) as a means to model such network transformations where paths give rise to stars of connectivity. It is also shown, through optimal multivariate statistical methods (i.e. canonical projections and maximum likelihood classification) that while the US highways network adheres closely to a geographical network model, its path-star transformation yields a network whose topological properties closely resembles those of the respective airport transportation network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we show the results of a comparison simulation study for three classification techniques: Multinomial Logistic Regression (MLR), No Metric Discriminant Analysis (NDA) and Linear Discriminant Analysis (LDA). The measure used to compare the performance of the three techniques was the Error Classification Rate (ECR). We found that MLR and LDA techniques have similar performance and that they are better than DNA when the population multivariate distribution is Normal or Logit-Normal. For the case of log-normal and Sinh(-1)-normal multivariate distributions we found that MLR had the better performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thirty-six Madeira wine samples from Boal, Malvazia, Sercial and Verdelho white grape varieties were analyzed in order to estimate the free fraction of monoterpenols and C13 norisoprenoids (terpenoid compounds) using dynamic headspace solid phase micro-extraction (HS-SPME) technique coupled with gas chromatography–mass spectrometry (GC–MS). The average values from three vintages (1998–2000) show that these wines have characteristic profiles of terpenoid compounds. Malvazia wines exhibits the highest values of total free monoterpenols, contrary to Verdelho wines which had the lowest levels of terpenoids but produced the highest concentration of farnesol. The use of multivariate analysis techniques allows establishing relations between the compounds and the varieties under investigation. Principal component analysis (PCA) and linear discriminant analysis (LDA) were applied to the obtained matrix data. A good separation and classification power between the four groups as a function of their varietal origin was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O conceito de superfície geomórfica permite uma interligação entre os diferentes ramos da ciência do solo, tais como geologia, geomorfologia e pedologia. Esta associação favorece a compreensão da distribuição espacial dos solos na paisagem, e torna possível compreender o comportamento dos atributos do solo, que estão principalmente relacionadas com a estratigrafia e formas do relevo. Assim, este estudo visa à aplicação da estatística multivariada para categorizar superfícies geomórficas em uma litossequência arenito-basalto, de modo a fornecer uma base para a avaliação do solo em áreas afins. A área de estudo está localizada no município de Pereira Barreto, São Paulo, Brasil. A área escolhida possui 530 hectares, onde foram localizadas e mapeadas três superfícies geomórficas (I, II e III). Na área, 134 amostras foram coletadas nas profundidades de 0,0-0,2 m e 0,8-1,0 m, foram determinados os conteúdos de areia, silte e argila, pH em CaCl2, conteúdo de MO, P, Ca, Mg, K, Al e H+Al. Com base nos resultados, foram realizadas a análise univariada e multivariada de variância, clusters e principal componente, a fim de comparar as três superfícies geomórficas. A análise estatística univariada dos atributos do solo não foi eficiente na identificação das três superfícies geomórficas. Utilizando-se os atributos físicos e químicos do solo, as técnicas estatísticas multivariada permitiram à separação dos três grupos de corpos naturais do solo que foram equivalentes as três superfícies geomórficas mapeadas. Estes resultados são interessantes, pois demonstram a viabilidade da utilização de classificação numérica das superfícies geomórficas para ajudar no mapeamento de solo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Essential oils were obtained from roots of 10 Aristolochia species by hydrodistillation and analysed by GC MS. A total of 75 compounds were identified in the analysed oils. Multivariate analyses of the chemical constituents of the roots enabled classification of the species into four morphological groups. These forms of analysis represent an aid in identification of further specimens belonging to these species. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting and mapping productivity areas allows crop producers to improve their planning of agricultural activities. The primary aims of this work were the identification and mapping of specific management areas allowing coffee bean quality to be predicted from soil attributes and their relationships to relief. The study area was located in the Southeast of the Minas Gerais state, Brazil. A grid containing a total of 145 uniformly spaced nodes 50 m apart was established over an area of 31. 7 ha from which samples were collected at depths of 0. 00-0. 20 m in order to determine physical and chemical attributes of the soil. These data were analysed in conjunction with plant attributes including production, proportion of beans retained by different sieves and drink quality. The results of principal component analysis (PCA) in combination with geostatistical data showed the attributes clay content and available iron to be the best choices for identifying four crop production environments. Environment A, which exhibited high clay and available iron contents, and low pH and base saturation, was that providing the highest yield (30. 4l ha-1) and best coffee beverage quality (61 sacks ha-1). Based on the results, we believe that multivariate analysis, geostatistics and the soil-relief relationships contained in the digital elevation model (DEM) can be effectively used in combination for the hybrid mapping of areas of varying suitability for coffee production. © 2012 Springer Science+Business Media New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of 39 organic compounds were determined in three fractions (head, heart and tail) obtained from the pot still distillation of fermented sugarcane juice. The results were evaluated using analysis of variance (ANOVA), Tukey's test, principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA). According to PCA and HCA, the experimental data lead to the formation of three clusters. The head fractions give rise to a more defined group. The heart and tail fractions showed some overlap consistent with its acid composition. The predictive ability of calibration and validation of the model generated by LDA for the three fractions classification were 90.5 and 100%, respectively. This model recognized as the heart twelve of the thirteen commercial cachacas (92.3%) with good sensory characteristics, thus showing potential for guiding the process of cuts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality of fresh-cut carambola (Averrhoa carambola L) is related to many chemical and biochemical variables especially those involved with softening and browning, both influenced by storage temperature. To study these effects, a multivariate analysis was used to evaluate slices packaged in vacuum-sealed polyolefin bags, and stored at 2.5 degrees C, 5 degrees C and 10 degrees C, for up to 16 d. The quality of slices at each temperature was correlated with the duration of storage, O(2) and CO(2) concentration in the package, physical chemical constituents, and activity of enzymes involved in softening (PG) and browning (PPO) metabolism. Three quality groups were identified by hierarchical cluster analysis, and the classification of the components within each of these groups was obtained from a principal component analysis (PCA). The characterization of samples by PCA clearly distinguished acceptable and non-acceptable slices. According to PCA, acceptable slices presented higher ascorbic acid content, greater hue angles ((o)h) and final lightness (L-5) in the first principal component (PC1). On the other hand, non-acceptable slices presented higher total pectin content. PPO activity in the PC1. Non-acceptable slices also presented higher soluble pectin content, increased pectin solubilisation and higher CO(2) concentration in the second principal component (PC2) whereas acceptable slices showed lower total sugar content. The hierarchical cluster and PCA analyses were useful for discriminating the quality of slices stored at different temperatures. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multivariate analyses of UV-Vis spectral data from cachaca wood extracts provide a simple and robust model to classify aged Brazilian cachacas according to the wood species used in the maturation barrels. The model is based on inspection of 93 extracts of oak and different Brazilian wood species by a non-aged cachaca used as an extraction solvent. Application of PCA (Principal Components Analysis) and HCA (Hierarchical Cluster Analysis) leads to identification of 6 clusters of cachaca wood extracts (amburana, amendoim, balsamo, castanheira, jatoba, and oak). LDA (Linear Discriminant Analysis) affords classification of 10 different wood species used in the cachaca extracts (amburana, amendoim, balsamo, cabreuva-parda, canela-sassafras, castanheira, jatoba, jequitiba-rosa, louro-canela, and oak) with an accuracy ranging from 80% (amendoim and castanheira) to 100% (balsamo and jequitiba-rosa). The methodology provides a low-cost alternative to methods based on liquid chromatography and mass spectrometry to classify cachacas aged in barrels that are composed of different wood species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current methods for quality control of sugar cane are performed in extracted juice using several methodologies, often requiring appreciable time and chemicals (eventually toxic), making the methods not green and expensive. The present study proposes the use of X-ray spectrometry together with chemometric methods as an innovative and alternative technique for determining sugar cane quality parameters, specifically sucrose concentration, POL, and fiber content. Measurements in stem, leaf, and juice were performed, and those applied directly in stem provided the best results. Prediction models for sugar cane stem determinations with a single 60 s irradiation using portable X-ray fluorescence equipment allows estimating the % sucrose, % fiber, and POL simultaneously. Average relative deviations in the prediction step of around 8% are acceptable if considering that field measurements were done. These results may indicate the best period to cut a particular crop as well as for evaluating the quality of sugar cane for the sugar and alcohol industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis some multivariate spectroscopic methods for the analysis of solutions are proposed. Spectroscopy and multivariate data analysis form a powerful combination for obtaining both quantitative and qualitative information and it is shown how spectroscopic techniques in combination with chemometric data evaluation can be used to obtain rapid, simple and efficient analytical methods. These spectroscopic methods consisting of spectroscopic analysis, a high level of automation and chemometric data evaluation can lead to analytical methods with a high analytical capacity, and for these methods, the term high-capacity analysis (HCA) is suggested. It is further shown how chemometric evaluation of the multivariate data in chromatographic analyses decreases the need for baseline separation. The thesis is based on six papers and the chemometric tools used are experimental design, principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), partial least squares regression (PLS) and parallel factor analysis (PARAFAC). The analytical techniques utilised are scanning ultraviolet-visible (UV-Vis) spectroscopy, diode array detection (DAD) used in non-column chromatographic diode array UV spectroscopy, high-performance liquid chromatography with diode array detection (HPLC-DAD) and fluorescence spectroscopy. The methods proposed are exemplified in the analysis of pharmaceutical solutions and serum proteins. In Paper I a method is proposed for the determination of the content and identity of the active compound in pharmaceutical solutions by means of UV-Vis spectroscopy, orthogonal signal correction and multivariate calibration with PLS and SIMCA classification. Paper II proposes a new method for the rapid determination of pharmaceutical solutions by the use of non-column chromatographic diode array UV spectroscopy, i.e. a conventional HPLC-DAD system without any chromatographic column connected. In Paper III an investigation is made of the ability of a control sample, of known content and identity to diagnose and correct errors in multivariate predictions something that together with use of multivariate residuals can make it possible to use the same calibration model over time. In Paper IV a method is proposed for simultaneous determination of serum proteins with fluorescence spectroscopy and multivariate calibration. Paper V proposes a method for the determination of chromatographic peak purity by means of PCA of HPLC-DAD data. In Paper VI PARAFAC is applied for the decomposition of DAD data of some partially separated peaks into the pure chromatographic, spectral and concentration profiles.