37 resultados para multiferroics
Resumo:
Aurivillius phase Bi 5Ti 3Fe 0.7Co 0.3O 15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn 3 substituted, Bi 5Ti 3Fe 0.7Mn 0.3O 15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, B r, of 6.37 emu/cm 3 (or 804 memu/g), remanent moment 4.99 × 10 -5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95 Fe/Co-rich spinel phase, likely CoFe 2 - xTi xO 4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi 5Ti 3Fe 0.7Co 0.3O 15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi 5Ti 3Fe 0.7Co 0.3O 15 phase is a novel ferroelectric and has potential commercial applications in high temperature piezoelectric and ferroelectric memory technologies. The implications for the conclusive demonstration of ferroelectric and ferromagnetic properties in single-phase materials of this type are discussed.
Resumo:
Aurivillius phase thin films of Bi5Ti3(FexMn1−x)O15 with x = 1 (Bi5Ti3FeO15) and 0.7 (Bi5Ti3Fe0.7Mn0.3O15) on SiO2-Si(100) and Pt/Ti/SiO2-Si substrates were fabricated by chemical solution deposition. The method was optimized in order to suppress formation of pyrochlore phase Bi2Ti2O7 and improve crystallinity. The structuralproperties of the films were examined by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Optimum crystallinity and pyrochlore phase suppression was achieved by the addition of 15 to 25 mol. % excess bismuth to the sols. Based on this study, 17.5 mol. % excess bismuth was used in the preparation of Bi2Ti2O7-free films of Bi5Ti3FeO15 on SrTiO3(100) and NdGaO3(001) substrates, confirming the suppression of pyrochlore phase using this excess of bismuth. Thirty percent of the Fe3+ ions in Bi5Ti3FeO15 was substituted with Mn3+ ions to form Bi2Ti2O7-free thin films of Bi5Ti3Fe0.7Mn0.3O15 on Pt/Ti/SiO2-Si, SiO2-Si(100), SrTiO3(100), and NdGaO3(001) substrates. Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films on Pt/Ti/SiO2-Si and SiO2-Si(100) substrates were achieved with a higher degree of a-axis orientation compared with the films on SrTiO3(100) and NdGaO3(001) substrates. Room temperature electromechanical and magnetic properties of the thin films were investigated in order to assess the potential of these materials for piezoelectric,ferroelectric, and multiferroic applications. Vertical piezoresponse force microscopy measurements of the films demonstrate that Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films are piezoelectric at room temperature. Room temperature switching spectroscopy-piezoresponse force microscopy measurements in the presence and absence of an applied bias demonstrate local ferroelectric switching behaviour (180°) in the films. Superconducting quantum interference device magnetometry measurements do not show any room temperature ferromagnetic hysteresis down to an upper detection limit of 2.53 × 10−3 emu; and it is concluded, therefore, that such films are not mutiferroic at room temperature. Piezoresponse force microscopy lithography images of Bi5Ti3Fe0.7Mn0.3O15thin films are presented.
Resumo:
If magnetism is universal in nature, magnetic materials are ubiquitous. A life without magnetism is unthinkable and a day without the influence of a magnetic material is unimaginable. They find innumerable applications in the form of many passive and active devices namely, compass, electric motor, generator, microphone, loud speaker, maglev train, magnetic resonance imaging, data recording and reading, hadron collider etc. The list is endless. Such is the influence of magnetism and magnetic materials in ones day to day life. With the advent of nanoscience and nanotechnology, along with the emergence of new areas/fields such as spintronics, multiferroics and magnetic refrigeration, the importance of magnetism is ever increasing and attracting the attention of researchers worldwide. The search for a fluid which exhibits magnetism has been on for quite some time. However nature has not bestowed us with a magnetic fluid and hence it has been the dream of many researchers to synthesize a magnetic fluid which is thought to revolutionize many applications based on magnetism. The discovery of a magnetic fluid by Jacob Rabinow in the year 1952 paved the way for a new branch of Physics/Engineering which later became magnetic fluids. This gave birth to a new class of material called magnetorheological materials. Magnetorheological materials are considered superior to electrorheological materials in that magnetorheology is a contactless operation and often inexpensive.Most of the studies in the past on magnetorheological materials were based on magnetic fluids. Recently the focus has been on the solid state analogue of magnetic fluids which are called Magnetorheological Elastomers (MREs). The very word magnetorheological elastomer implies that the rheological properties of these materials can be altered by the influence of an external applied magnetic field and this process is reversible. If the application of an external magnetic field modifies the viscosity of a magnetic fluid, the effect of external magnetic stimuli on a magnetorheological elastomer is in the modification of its stiffness. They are reversible too. Magnetorheological materials exhibit variable stiffness and find applications in adaptive structures of aerospace, automotive civil and electrical engineering applications. The major advantage of MRE is that the particles are not able to settle with time and hence there is no need of a vessel to hold it. The possibility of hazardous waste leakage is no more with a solid MRE. Moreover, the particles in a solid MRE will not affect the performance and durability of the equipment. Usually MR solids work only in the pre yield region while MR fluids, typically work in the post yield state. The application of an external magnetic field modifies the stiffness constant, shear modulus and loss modulus which are complex quantities. In viscoelastic materials a part of the input energy is stored and released during each cycle and a part is dissipated as heat. The storage modulus G′ represents the capacity of the material to store energy of deformation, which contribute to material stiffness. The loss modulusG′′ represents the ability of the material to dissipate the energy of deformation. Such materials can find applications in the form of adaptive vibration absorbers (ATVAs), stiffness tunable mounts and variable impedance surfaces. MREs are an important material for automobile giants and became the focus of this research for eventual automatic vibration control, sound isolation, brakes, clutches and suspension systems
Resumo:
In this thesis, the magnetic properties of four transition-metal oxides are presented. Their multiferroic and magnetoelectric phases have been investigated by means of different neutron scattering techniques. The materials TbMnO3 and MnWO4 belong to the group of spin-induced multiferroics. Their ferroelectric polarization can be explained by the inverse DzyaloshinskiiMoriya interaction. Another common feature of both materials is the presence of subsequent magnetic transitions from a spin-density wave to a spin spiral. The features of the phase transitions have been studied in both materials and it could be shown that diffuse magnetic scattering from the spin spiral is present even in the ordered spin-density wave phase. The excitation spectrum in the multiferroic phase of TbMnO3 was investigated in detail and a comprehensive dataset was obtained using time-of-flight spectroscopy. A spin-wave model could be obtained which can quantitatively describe the full dispersion. Furthermore, the polarization of the zone-center excitations could be derived which fit well to data from inelastic neutron spectroscopy and infrared spectroscopy. With the combination of spherical neutron polarimetry and a poling of the sample by an electric field, it was possible to observe the chiral magnetic component of the magnetic excitations in TbMnO3 and MnWO4. The spin-wave model for TbMnO3 obtained in this thesis is able to correctly describe the dispersion of this component. The double tungstate NaFe(WO4)2 is isostructural to the multiferroic MnWO4 and develops a complex magnetic phase diagram. By the use of neutron diffraction techniques, the zero-field structure and high-field structures in magnetic field applied along the b-axis could be determined. The data reveal a direct transition into an incommensurate spin-spiral structure. The value of the incommensurability is driven by anharmonic modulations and shows strong hysteresis effects. The static and dynamic properties in the magnetoelectric spin-glass phase of Ni0.42Mn0.58TiO3 were studied in detail. The spin-glass phase is composed of short-ranged MnTiO3 and NiTiO3-type order. The antiferromagnetic domains could be controlled by crossed magnetic and electric fields, which was visualized using spherical neutron polarimetry. A comprehensive dataset of the magnetic excitations in the spin-glass phase was collected. The dataset revealed correlations in the hexagonal plane which are only weakly coupled along the c-axis. The excitation spectra could be simulated by taking into account the MnTiO3-type order.
Resumo:
The comprehensive study on the coupling of magnetism, electrical polarization and the crystalline lattice with the off-stoichiometric effects in self-doped multiferroic hexagonal h-LuMnxO3±δ (0.92≤x≤1.12) ceramic oxides was carried out for the PhD work. There is a complex coupling of the three ferroic degrees. The cancelation of the magnetic moments of ions in the antiferromagnetic order, electric polarization with specific vortex/antivortex topology and lattice properties have pushed researchers to find out ways to disclose the underlying physics and chemistry of magneto-electric and magneto-elastic couplings of h-RMnO3 multiferroic materials. In this research work, self-doping of Lu-sites or Mn-sites of h-LuMnxO3±δ ceramics prepared via solid state route was done to pave a way for deeper understanding of the antiferromagnetic transition, the weak ferromagnetism often reported in the same crystalline lattices and the ferroelectric properties coupled to the imposed lattice changes. Accordingly to the aim of the PhD thesis, the objectives set for the sintering study in the first chapter on experimental results were two. First, study of sintering off-stoichiometric samples within conditions reported in the bibliography and also extracted from the phase diagrams of the LuMnxO3±δ, with a multiple firings ending with a last high temperature step at 1300ºC for 24 hours. Second, explore longer annealing times of up to 240 hours at the fixed temperature of 1300 ºC in a search for improving the properties of the solid solution under study. All series of LuMnxO3±δ ceramics for each annealing time were characterized to tentatively build a framework enabling comparison of measured properties with results of others available in literature. XRD and Rietveld refinement of data give the evolution the lattice parameters as a function to x. Shrinkage of the lattice parameters with increasing x values was observed, the stability limit of the solid solution being determined by analysis of lattice parameters. The evolution of grain size and presence of secondary phases have been investigated by means of TEM, SEM, EDS and EBSD techniques. The dependencies of grain growth and regression of secondary phases on composition x and time were further characterized. Magnetic susceptibility of samples and magnetic irreversibility were extensively examined in the present work. The dependency of magnetic susceptibility, Neel ordering transition and important magnetic parameters are determined and compared to observation in other multiferroics in the following chapter of the thesis. As a tool of high sensitivity to detect minor traces of the secondary phase hausmannite, magnetic measurements are suggested for cross-checking of phase diagrams. Difficulty of previous studies on interpreting the magnetic anomaly below 43 K in h-RMnO3 oxides was discussed and assigned to the Mn3O4 phase, with supported of the electron microscopy. Magneto-electric coupling where AFM ordering is coupled to dielectric polarization is investigated as a function of x and of sintering condition via frequency and temperature dependent complex dielectric constant measurements in the final chapter of the thesis. Within the limits of solid solubility, the crystalline lattice of off-stoichiometric ceramics was shown to preserve the magneto-electric coupling at TN. It represents the first research work on magneto-electric coupling modified by vacancy doping to author’s knowledge. Studied lattices would reveal distortions at the atomic scale imposed by local changes of x dependent on sintering conditions which were widely inspected by using TEM/STEM methods, complemented with EDS and EELS spectroscopy all together to provide comprehensive information on cross coupling of distortions, inhomogeneity and electronic structure assembled and discussed in a specific chapter. Internal interfaces inside crystalline grains were examined. Qualitative explanations of the measured magnetic and ferroelectric properties were established in relation to observed nanoscale features of h-LuMnxO3±δ ceramics. Ferroelectric domains and topological defects are displayed both in TEM and AFM/PFM images, the later technique being used to look at size, distribution and switching of ferroelectric domains influenced by vacancy doping at the micron scale bridging to complementary TEM studies on the atomic structure of ferroelectric domains. In support to experimental study, DFT simulations using Wien2K code have been carried out in order to interpret the results of EELS spectra of O K-edge and to obtain information on the cation hybridization to oxygen ions. The L3,2 edges of Mn is used to access the oxidation state of the Mn ions inside crystalline grains. In addition, rehybridization driven ferroelectricity is also evaluated by comparing the partial density of states of the orbitals of all ions of the samples, also the polarization was calculated and correlated to the off-stoichiometric effect.
Resumo:
Wydział Fizyki
Resumo:
Multiferroic materials displaying coupled ferroelectric and ferromagnetic order parameters could provide a means for data storage whereby bits could be written electrically and read magnetically, or vice versa. Thin films of Aurivillius phase Bi6Ti2.8Fe1.52Mn0.68O18, previously prepared by a chemical solution deposition (CSD) technique, are multiferroics demonstrating magnetoelectric coupling at room temperature. Here, we demonstrate the growth of a similar composition, Bi6Ti2.99Fe1.46Mn0.55O18, via the liquid injection chemical vapor deposition technique. High-resolution magnetic measurements reveal a considerably higher in-plane ferromagnetic signature than CSD grown films (MS = 24.25 emu/g (215 emu/cm3), MR = 9.916 emu/g (81.5 emu/cm3), HC = 170 Oe). A statistical analysis of the results from a thorough microstructural examination of the samples, allows us to conclude that the ferromagnetic signature can be attributed to the Aurivillius phase, with a confidence level of 99.95%. In addition, we report the direct piezoresponse force microscopy visualization of ferroelectric switching while going through a full in-plane magnetic field cycle, where increased volumes (8.6 to 14% compared with 4 to 7% for the CSD-grown films) of the film engage in magnetoelectric coupling and demonstrate both irreversible and reversible magnetoelectric domain switching.