218 resultados para mscs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Musculoskeletal conditions (MSCs) are a group of diseases that affect the body’s bones, joints, muscles and the tissues that connect them. Common MSCs include back pain, rheumatoid arthritis, osteoarthritis, osteoporosis, and spinal disorders. MSCs are the most common cause of severe long term pain and physical disability in developed countries. They significantly affect the psychosocial wellbeing of individuals as well as their families and carers. They are responsible for substantial costs to the health and social care system and the economy. They are a leading cause of absence from work and lost productivity at work. MSCs comprise a diverse group of conditions. Some have a specific medical diagnosis (eg rheumatoid arthritis) but others have no clear medical diagnosis (eg back pain). Risk factors for the development and progression of MSCs include age, sex, family history, obesity, physical inactivity, injury and biomechanical occupational health issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Musculoskeletal conditions (MSCs) are a group of diseases that affect the body’s bones, joints, muscles and the tissues that connect them. Common MSCs include back pain, rheumatoid arthritis, osteoarthritis, osteoporosis, and spinal disorders. MSCs are the most common cause of severe long term pain and physical disability in developed countries. They significantly affect the psychosocial wellbeing of individuals as well as their families and carers. They are responsible for substantial costs to the health and social care system and the economy. They are a leading cause of absence from work and lost productivity at work. MSCs comprise a diverse group of conditions. Some have a specific medical diagnosis (eg rheumatoid arthritis) but others have no clear medical diagnosis (eg back pain). Risk factors for the development and progression of MSCs include age, sex, family history, obesity, physical inactivity, injury and biomechanical occupational health issues. This document details the methods used to calculate the estimates and forecasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IPH has estimated and forecast the number of adults with MSCs for the years 2010, 2015 and 2020. In the Republic of Ireland, the data are based on the Survey of Lifestyle, Attitudes and Nutrition (SLÁN) 2007 . The data describe the number of people who report that they have experienced doctor-diagnosed MSC in the previous 12 months:     Lower back pain or any other chronic back condition     Rheumatoid arthritis (inflammation of the joints)     Osteoarthritis (arthrosis, joint degradation) Data are  available by age and sex for each Local Health Office of the Health Service Executive (HSE) in the Republic of Ireland. In Northern Ireland, the data are based on the Health and Social Wellbeing Survey 2005/06 and Understanding Society 2009. The data describe the number of adults who:     Have ever consulted a doctor about back pain     Are currently receiving treatment for musculoskeletal problems (such as arthritis, rheumatism)     Have ever been told by a doctor or other health professional that they had have arthritis? Data are available by age and sex for each Local Government District in Northern Ireland. There are significant differences between the definitions used in RoI and NI and North-South comparisons are not valid. The RoI measures relate to specific MSCs in the previous 12 months that had been diagnosed by a doctor. The NI measures relate to doctor-consultations at any time in the past, doctor-diagnosis at any time in the past and current treatment. The IPH estimated prevalence per cents may be marginally different to estimated prevalence per cents taken directly from the reference study. There are two reasons for this: 1) The IPH prevalence estimates relate to 2010 while the reference studies relate to earlier years (Northern Ireland Health and Social Wellbeing Survey 2005/06, Survey of Lifestyle, Attitudes and Nutrition 2007, Understanding Society 2009). Although we assume that the risk of the condition in the risk groups do not change over time, the distribution of the number of people in the risk groups in the population changes over time (eg the population ages).  This new distribution of the risk groups in the population means that the risk of the condition is weighted differently to the reference study and this results in a different overall prevalence estimate. 2) The IPH prevalence estimates are based on a statistical model of the reference study. The model includes a number of explanatory variables to predict the risk of the condition. Therefore the model does not include records from the reference study that are missing data on these explanatory variables. A prevalence estimate for a condition taken directly from the reference study would include these records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose:To functionally and morphologically characterize the retina and optic nerve after transplantation of Brain-derived neurotrophic factor (BDNF) and Glial-derived neurotrophic factor (GDNF) secreting mesenchymal stem cells (MSCs) into glaucomatous rat eyes. Methods:Chronic ocular hypertension (COH) was induced in Brown Norway rats. Lentiviral constructs were used to transduce rat MSCs to produce BDNF, GDNF, or green fluorescent protein (GFP). The fellow eyes served as internal controls. Two days following COH induction, eyes received intravitreal injections of transduced MSCs. Electroretinography was performed to assess retinal function. Tonometry was performed throughout the experiment to monitor IOP. 42 days after MSC transplantation, rats were euthanized and the eyes and optic nerves were prepared for analysis. Results:Increased expression and secretion of BDNF and GDNF from lentiviral-transduced MSCs was verified using ELISA, and a bioactivity assay. Ratio metric analysis (COH eye/ Internal control eye response) of the Max combined response A-Wave showed animals with BDNF-MSCs (23.35 ± 5.15%, p=0.021) and GDNF-MSCs (28.73 ± 3.61%, p=0.025) preserved significantly more visual function than GFP-MSC treated eyes MSCs (18.05 ± 5.51%). Animals receiving BDNF-MSCs also had significantly better B-wave (33.80 ± 7.19%) and flicker ERG responses (28.52 ± 10.43%) than GFP-MSC treated animals (14.06 ± 12.67%; 3.52 ± 0.07%, respectively). Animals receiving GDNF-MSC transplants tended to have better function than animals with GFP-MSC transplants, but were not statistically significant (p=0.057 and p=0.0639). Conclusions:Mesenchymal stem cells are an excellent source of cells for autologous transplantation for the treatment of neurodegenerative diseases. We have demonstrated that lentiviral- transduced MSCs can survive following transplantation and preserve visual function in glaucomatous eyes. These results suggest that MSCs may be an ideal cellular vehicle for delivery of specific neurotrophic factors to the retina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a useful strategy. Although MSCs are commonly isolated by exploiting their plastic adherence, several studies have suggested that there are other populations of stem and/or osteoprogenitor cells which are removed from primary culture during media replacement. Therefore, we developed a three-dimensional (3D) culture system in which adherent and non-adherent stem cells are selected and expanded. Here, we described the characterization of 3D culture-derived cell populations in vitro and the capacity of these cells to differentiate into bone and/or cartilage tissue when placed inside of demineralized bone matrix (DBM) cylinders, implanted subcutaneously into the backs of rat for 2, 4 and 8 weeks. Our results demonstrates that 3D culture cells were a heterogeneous population of uncommitted cells that express pluripotent, hematopoietic, mesenchymal and endothelial specific markers in vitro and can undergo osteogenic differentiation in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Chronic venous insufficiency (CVI) represents a major global health problem with increasing prevalence and morbidity. CVI is due to an incompetence of the venous valves, which causes venous reflux and distal venous hypertension. Several studies have focused on the replacement of diseased venous valves using xeno- and allogenic transplants, so far with moderate success due to immunologic and thromboembolic complications. Autologous cell-derived tissue-engineered venous valves (TEVVs) based on fully biodegradable scaffolds could overcome these limitations by providing non-immunogenic, non-thrombogenic constructs with remodeling and growth potential. Methods: Tri- and bicuspid venous valves (n=27) based on polyglycolic acid-poly-4-hydroxybutyrate composite scaffolds, integrated into self-expandable nitinol stents, were engineered from autologous ovine bone-marrow-derived mesenchymal stem cells (BM-MSCs) and endothelialized. After in vitro conditioning in a (flow) pulse duplicator system, the TEVVs were crimped (n=18) and experimentally delivered (n=7). The effects of crimping on the tissue-engineered constructs were investigated using histology, immunohistochemistry, scanning electron microscopy, grating interferometry (GI), and planar fluorescence reflectance imaging. Results: The generated TEVVs showed layered tissue formation with increasing collagen and glycosaminoglycan levels dependent on the duration of in vitro conditioning. After crimping no effects were found on the MSC level in scanning electron microscopy analysis, GI, histology, and extracellular matrix analysis. However, substantial endothelial cell loss was detected after the crimping procedure, which could be reduced by increasing the static conditioning phase. Conclusions: Autologous living small-diameter TEVVs can be successfully fabricated from ovine BM-MSCs using a (flow) pulse duplicator conditioning approach. These constructs hold the potential to overcome the limitations of currently used non-autologous replacement materials and may open new therapeutic concepts for the treatment of CVI in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer stem cells that display tumor-initiating properties have recently been identified in several distinct types of malignancies, holding promise for more effective therapeutic strategies. However, evidence of such cells in sarcomas, which include some of the most aggressive and therapy-resistant tumors, has not been shown to date. Here, we identify and characterize cancer stem cells in Ewing's sarcoma family tumors (ESFT), a highly aggressive pediatric malignancy believed to be of mesenchymal stem cell (MSC) origin. Using magnetic bead cell separation of primary ESFT, we have isolated a subpopulation of CD133+ tumor cells that display the capacity to initiate and sustain tumor growth through serial transplantation in nonobese diabetic/severe combined immunodeficiency mice, re-establishing at each in vivo passage the parental tumor phenotype and hierarchical cell organization. Consistent with the plasticity of MSCs, in vitro differentiation assays showed that the CD133+ cell population retained the ability to differentiate along adipogenic, osteogenic, and chondrogenic lineages. Quantitative real-time PCR analysis of genes implicated in stem cell maintenance revealed that CD133+ ESFT cells express significantly higher levels of OCT4 and NANOG than their CD133- counterparts. Taken together, our observations provide the first identification of ESFT cancer stem cells and demonstration of their MSC properties, a critical step towards a better biological understanding and rational therapeutic targeting of these tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Recently, mesenchymal stem cells (MSC) of perivascular origin have been identified in several organs not including the heart. Using a novel cell isolation protocol, we have isolated cells sharing common characteristics from mouse hearts and pancreas. The aim of the present study was to characterize these cells in vitro.Methods: Cells were isolated from neonatal and adult mouse hearts and pancreas and cultured for more than 6 months. Surface marker expression was analyzed by flow cytometry and immunocytochemistry. Cell differentiation was tested using multiple differentiation media. Insulin production by pancreas-derived cells was tested by dithizone staining.Results: Cells showing a similar, distinctive morphology were obtained from the heart and pancreas after 4-8 weeks of culture. Cells from the two organs also showed a very similar immunophenotype, characterized by expression of c-kit (stem cell factor receptor), CD44, the common leukocyte marker CD45, and the monocytic markers CD11b and CD14. A significant proportion of cardiac and pancreatic cells expressed NG2, a marker for pericytes and other vascular cells. A significant proportion of cardiac, but not of pancreatic cells expressed stem cell antigen-1 (Sca-1). However, cells did not express T, B or dendritic cell markers. Cells of both cardiac and pancreatic origin spontaneously formed "spheres" (spherical cell aggregates similar to "neurospheres" formed by neural stem cells) in vitro. Cardiosphere formation was enhanced by TNF-alpha. Several cardiospheres (but no "pancreatospheres") derived from neonatal (but not adult) cells showed spontaneous rhythmic contractions, thus demonstrating cardiac differentiation (this was confirmed by immunostaining for alpha-sarcomeric actinin). Beating activity was enhanced by low serum conditions. Cells from both organs formed adipocytes, osteocytes and osteocytes under appropriate conditions, the typical differentiation pattern of MSCs. Pancreas-derived cells also formed dithizonepositive insulin-producing cells.Conclusions: We have defined cardiac and pancreatic cell populations that share a common morphology, growth characteristics, and a unique immunophenotype. Expression of perivascular and monocytic markers, along with stem/priogenitor cell markers by these cells suggests a relationship with pericytes-mesoangioblasts and so-called multipotent monocytes. Cells show MSC-typical growth and differentiation patterns, together with tissue-specific differentiation potential: cardiomyocytes for cardiac-derived cells and insulinproducing cells for pancreas-derived cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past decade, use of autologous bone marrow-derived mononuclear cells (BMCs) has proven to be safe in phase-I/II studies in patients with myocardial infarction (MI). Taken as a whole, results support a modest yet significant improvement in cardiac function in cell-treated patients. Skeletal myoblasts, adipose-derived stem cells, and bone marrow-derived mesenchymal stem cells (MSCs) have also been tested in clinical studies. MSCs expand rapidly in vitro and have a potential for multilineage differentiation. However, their regenerative capacity decreases with aging, limiting efficacy in old patients. Allogeneic MSCs offer several advantages over autologous BMCs; however, immune rejection of allogeneic cells remains a key issue. As human MSCs do not express the human leukocyte antigen (HLA) class II under normal conditions, and because they modulate T-cell-mediated responses, it has been proposed that allogeneic MSCs may escape immunosurveillance. However, recent data suggest that allogeneic MSCs may switch immune states in vivo to express HLA class II, present alloantigen and induce immune rejection. Allogeneic MSCs, unlike syngeneic ones, were eliminated from rat hearts by 5 weeks, with a loss of functional benefit. Allogeneic MSCs have also been tested in initial clinical studies in cardiology patients. Intravenous allogeneic MSC infusion has proven to be safe in a phase-I trial in patients with acute MI. Endoventricular allogeneic MSC injection has been associated with reduced adverse cardiac events in a phase-II trial in patients with chronic heart failure. The long-term safety and efficacy of allogeneic MSCs for cardiac repair remain to be established. Ongoing phase-II trials are addressing these issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé La dérégulation de c-Myc est un événement fréquent de la transformation cellulaire. Une régulation positive de cette oncoprotéine a été démontrée dans divers mélanomes cutanés primaires et métastatiques et est associée à un pronostic défavorable (Grover et al., 1996; Zhuang et al., 2008). c-Myc est considéré comme une molécule centrale impliquée dans plusieurs processus de l'homéostasie cellulaire. En raison de sa contribution importante dans la progression tumorale, la fonction de c-Myc a été étudiée intensément. Cependant nous connaissons peu le rôle de ce facteur de transcription dans l'embryogenèse et dans la spécification tissulaire. Un déficit total de c-Myc pendant l'embryogenèse conduit à la mort embryonnaire avant 10.5 jours de gestation. Cette mort est causée par de multiples imperfections du développement touchant la taille de l'embryon, le coeur, le péricarde, le tube neural et les cellules sanguines (Davis et al., 1993; Trumpp et al., 2001). Récemment, il a été montré que la plupart de ces anomalies sont secondaires et résultent d'une insuffisance du placenta dans les embryons c-myc-/- (Dubois et al., 2008). Sachant que c-Myc est important dans la maintenance des lignées de la crête neurale (Wei et al., 2007), nous nous sommes intéressés au rôle de c-Myc dans le développement des cellules pigmentaires et à leur homéostasie après la naissance. Un allèle floxé de c-myc (Trumpp et al., 2001) a été utilisé pour supprimer ce gène spécifiquement dans la lignée mélanocytaire à l'aide d'une souris transgénique Tyr::Cre (Delmas et al., 2003). L'ablation des deux allèles de c-myc dans les mélanocytes des souris c-myccKO conduit au phénotype de grisonnement des poils, observé directement après la naissance et associé à une diminution du nombre de mélanocytes dans le bulbe des follicules pileux. Les cellules pigmentaires restantes expriment les marqueurs mélanogéniques (Tyr, TRP-1, Dct and MITF) et semblent être fonctionnelles puisqu'elles peuvent produire et transférer la mélanine. De plus, la capacité de prolifération des mélanocytes déficients en c-Myc dans le bulbe des follicules pileux ne semble pas être affectée chez les nouveaux-nés. Les cellules souches mélanocytaires sont présentes, mais en nombre réduit, dans le bulge des follicules pileux à la fin de la morphogenèse chez les souris c-myccKO âgées de huit jours. Ces cellules sont maintenues sans changement durant le premier cycle pileux (vérifié à l'âge de trente jours), ce qui sous-entend que la fonction de c-Myc n'est pas nécessaire pour ce processus. Ceci explique pourquoi, en supposant que des cellules souches mélanocytaires fonctionnelles sont présentes dans la peau, nous n'observons pas de dilution de couleur de la robe liée à l'âge. Cependant, la présence de ces cellules souches mélanocytaires dans la peau c-myccKO ne suffit pas à assurer une quantité normale de mélanocytes différenciés dans le bulbe des follicules pileux. Cette population de cellules pigmentaires matures est sévèrement affectée par la suppression de c-Myc, ce qui contribue amplement au phénotype de grisonnement des poils. De plus, c-Myc paraît être important pour le développement des mélanocytes. Ainsi, le nombre de mélanoblastes diminue dans les embryons c-myccKO à partir du douzième jour de gestation. A treize jours de gestation, au stade où les mélanoblastes pénètrent dans l'épiderme et prolifèrent, les mélanoblastes déficients en c-Myc ne s'adaptent pas aux signaux de prolifération et se retrouvent en nombre réduit dans l'épiderme. Finalement, nous nous sommes intéressés, au rôle de N-Myc, un homologue proche de c-Myc, dans la lignée mélanocytaire. Nos expériences ont montré que. N-Myc était superflu pour le développement et l'homéostasie des mélanocytes, une seule copie du gène c-myc étant suffisante pour maintenir une pigmentation normale de la robe des souris c-mycc-myccKO/+~N_ myccKO/KO. Cependant, le rôle essentiel de N-Myc dans la maintenance des cellules mélanocytaires précurseurs apparaît lorsque c-Myc est absent, puisque la suppression simultanée des deux Myc résulte en une perte complète de la coloration de la robe. Ceci implique la présence d'un mécanisme compensatoire entre c- et N-Myc dans la lignée mélanocytaire, avec un rôle prédominant de c-Myc. Summary Deregulation of c-Myc is known to be a common event in cellular transformation. Upregulation of this oncoprotein was shown in a variety of primary and metastatic cutaneous melanomas and has been associated with a poor prognosis (Grover et al., 1996; Zhuang et al., 2008). c-myc is seen as a central molecule involved in many aspects of cellular homeostasis. c-Myc function has been intensively studied mostly because of its significant contribution to tumour progression. However little is known on the role of this transcription factor in embryogenesis and tissue specification. Complete loss of c-Myc during embryogenesis results in embryonic death before E10.5 due to multiple developmental defects including embryonic size, heart, pericardium, neural tube and blood cells (Davis et al., 1993; Trumpp et al., 2001). Recently it was discovered that most of these abnormalities are secondary and results of placental insufficiency in c-Myc-/- embryos (Dubois et al., 2008). Here, we focused on the role of c-Myc in pigment cell development and homeostasis after birth, knowing that c-Myc is important in the maintenance of neural crest lineages (Wei et al., 2007). A floxed allele of c-Myc (Trumpp et al., 2001) was used to specifically delete this gene in the melanocyte lineage using Tyr::Cre transgenic mice (Delmas et al., 2003). Removal of both c-Myc alleles in melanocytes of c-MyccKO mouse led to the grey hair phenotype which is seen directly after birth and was associated with a decrease in the melanocyte number in the bulb of the hair follicle. The remaining population of pigment cells express melanogenic markers (Tyr, TRP-1, Dct and MITF) and seem functionally normal since they can produce and transfer melanin. Furthermore proliferation capacity of c-Myc deficient melanocytes in the bulb of hair follicle seems not to be affected in newborn animals. Melanocyte stem cells (MSCs) are present but reduced in numbers in the bulge of the hair follicle at the end of morphogenesis in 8 days old c-MyccKO mice. These cells are maintained through the first hair cycle (as verified at P30) without any further changes, suggesting that c-Myc function is not required for this process. This explains why we did not detect any agerelated coat color dilution, assuming a presence of functional MSCs in the skin. Importantly, presence of MSCs in c-MyccKO skin was not sufficient for assuring a normal number of differentiated melanocytes in the bulb of the hair follicle. This population of mature pigmented cells is severely affected upon c-myc deletion thus largely contributing to the grey hair phenotype. Moreover, c-Myc appears to be important for melanocyte development. Thus, melanoblast number is affected in c-MyccKO embryos day 12 of gestation onwards. At E13.5, when melanoblasts enter the epidermis and proliferate, c-myc deficient melanoblasts failed to adapt to proliferation signals and are therefore reduced in number in the epidermis. Finally, we addressed the role of N-Myc, a closest homologue of c-Myc, in the melanocyte lineage. In these experiments, N-Myc was dispensable for melanocyte development and homeostasis, and even one copy of the c-myc gene was sufficient to maintain normal coat color pigmentation in c-mycc-mycCKO/+ ,N-myccKO/KO mice. However the crucial role of N-Myc in maintenance of melanocyte precursor cells became apparent when c-myc is eliminated since simultaneous deletion of both Myc results in complete loss of coat color pigmentation. This suggests compensatory mechanisms between c- and N-Myc with a predominant role of c-Myc in melanocyte lineage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les tumeurs de la famille du sarcome d'Ewing (ESFTs) sont les deuxièmes plus fréquentes formes de cancer de l'os chez l'enfant et l'adolescent. Le gène de fusion EWS-FLI1 est associé à 85-90% des ESFTs. Ce cancer a probablement pour origine des cellules souches mésenchymateuses (MSCs). Il a en effet été démontré que les MSCs pédiatriques (hpMSCs) sont particulièrement permissives pour le gène de fusion EWS-FLI1 et que celui-ci induit des gènes de cellules souches embryonnaires. Ceci génère une sous-population de cellules présentant des caractéristiques de cellules souches cancéreuses de sarcome d'Ewing (ESFT CSCs) in vitro. Ces cellules reprogrammées n'ont pas de potentiel tumorigénique et un certain nombre de microARN ne sont pas réprimés ou exprimés comme dans un sarcome d'Ewing primaire et sa sous-population de CSCs. Parmi ces microARN on trouve en particulier les membres de la famille let-7 qui jouent un rôle clé dans le contrôle de l'état de différenciation des cellules et régulent de nombreux oncogènes. De plus, leur répression serait capable de favoriser la tumorigénèse. Tous les membres de la famille des microARNs let-7 ont un régulateur commun, la protéine lin-28, qui exerce notamment son action en bloquant la maturation de ces microARNs. Dans ce travail, il s'agira d'évaluer si la co-expression de EWS-FLI1 et de lin-28 dans des hpMSCs permet de créer une sous-population de cellules présentant les caractéristiques de ESFT CSCs. Nous évaluerons l'effet de lin-28 sur les membres de la famille des let7 dans les hpMSCs et apprécierons le potentiel tumorigénique in vivo des hpMSCs exprimant EWS-FLI1 et lin-28. L'outil « Targetscan » est un logiciel qui permet de prédire les cibles des microARN en analysant leur séquence et en la comparant à l'ARN messager 3' non transcrit. Pour les microARN de la famille des let-7, cet outil identifie des gènes cibles potentiels qui jouent un rôle important dans le sarcome d'Ewing. Nous évaluerons si ces protéines sont en effet régulées de façon let-7 dépendante et les conséquences sur la pathogénèse des ESFTs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches. Mesenchymal stem cells (MSC) are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties.The research on MSCs has mainly focused on their effects onT cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.