33 resultados para mordenite
Resumo:
Experimental and theoretical methods have been used to study zeolite structures, properties and applications as membranes for separation purposes. Thin layers of silicalite-1 and Na-LTA zeolites have been synthesised onto carbon-graphite supports using a hydrothermal synthesis procedure. The separation behaviour of the composite membranes was characterized by gas permeation studies of pure, binary and ternary mixtures of methane, ethane and propane. The influence of temperature and feed gas mixture composition on the separation and selectivity performance of the membranes was also investigated. It was found that the silicalite-1 composite membranes synthesised onto the 4 hour oxidized carbon-graphite supports showed the most promising separation behaviour of all the composite membranes investigated. Molecular simulation methods were used to gain an understanding of how hydrocarbon molecules behave both within the pores and on the surfaces of silicalite-1, mordenite and LTA zeolites. Molecular dynamic simulations were used to investigate the influence of temperature and molecular loadings on the diffusional behaviour of hydrocarbons in zeolites. Both hydroxylated (surface termination with hydroxyl groups) and non-hydroxylated silicalite-1 and Na-mordenite surfaces were generated. For both zeolites the most stable surfaces correspond to the {010} surface. For the silicalite-1 {010} surface the adsorption of hydrocarbons and molecular water onto the hydroxylated surface showed a favourable exothermic adsorption process compared to adsorption on the non-hydroxylated surface. With the Na-mordenite {010} surface the adsorption of hydrocarbons onto both the hydroxylated and non-hydroxylated surfaces had a combination of favourable and non-favourable adsorption energies, while the adsorption of molecular water onto both types of surface was found to be a favourable adsorption process.
Resumo:
The base free oxidation of glycerol with molecular oxygen in water using bimetallic Au-Pt catalysts on three different acidic zeolite supports (H-mordenite, H-β and H-USY) was explored in a batch setup. At temperatures between 140 and 180 °C, lactic acid formation was significant and highest selectivity (60 % lactic acid at 80 % glycerol conversion) was obtained using Au-Pt/USY-600 (180 °C). A selectivity switch to glyceric acid (GLYA) was observed when the reactions were performed at 100 °C. Highest conversion and selectivity towards GLYA were obtained with Au-Pt/H-β as the catalyst (68 % selectivity at 68 % conversion).
Resumo:
Meso-/microporous zeolites combine the charactersitics of well-defined micropores of zeolite with efficient mass transfer consequences of mesopores to increase the efficiency of the catalysts in reactions involving bulky molecules. Different methods such as demetallation and templating have been explored for the synthesis of meso-/microporous zeolites. However, they all have limitations in production of meso-/microporous zeolites with tunable textural and catalytic properties using few synthesis steps. To address this challenge, a simple one-step dual template synthesis approach has been developed in this work to engineer lamellar meso-/microporous zeolites structures with tunable textural and catalytic properties. First, one-step dual template synthesis of meso-/microporous mordenite framework inverted (MFI) zeolite structures was investigated. Tetrapropyl ammonium hydroxide (TPAOH) and diquaternary ammonium surfactant ([C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13]Br2, C22-6-6) were used as templates to produce micropores and mesopores, respectively. The variation in concentration ratios of dual templates and hydrothermal synthesis conditions resulted in production of multi-lamellar MFI and the hybrid lamellar-bulk MFI (HLBM) zeolite structures. The relationship between the morphology, porosity, acidity, and catalytic properties of these catalysts was systematically studied. Then, the validity of the proposed synthesis approach for production of other types of zeolites composites was examined by creating a meso-/microporous bulk polymorph A (BEA)-lamellar MFI (BBLM) composite. The resulted composite samples showed higher catalytic stability compared to their single component zeolites. The studies demonstrated the high potential of the one-step dual template synthesis procedure for engineering the textural and catalytic properties of the synthesized zeolites.