944 resultados para monocytes, dendritic cells, macrophages, DNA-repair, ROS, ionizing radiation, temozolomide
Resumo:
Dendritic cells (DC) represent a heterogeneous cell family of major importance for innate immune responses against pathogens and antigen presentation during infection, cancer, allergy and autoimmunity. The aim of the present study was to characterize canine DC generated in vitro with respect to their phenotype, responsiveness to toll-like receptor (TLR) ligands and T-cell stimulatory capacity. DC were derived from monocytes (MoDC) and from bone marrow hematopoietic cells cultured with either Flt3-ligand (FL-BMDC) or with GM-CSF (GM-BMDC). All three methods generated cells with typical DC morphology that expressed CD1c, CD11c and CD14, similar to macrophages. However, CD40 was only found on DC, CD206 on MPhi and BMDC, but not on monocytes and MoDC. CD1c was not found on monocytes but on all in vitro differentiated cells. FL-BMDC and GM-BMDC were partially positive for CD4 and CD8. CD45RA was expressed on a subset of FL-BMDC but not on MoDC and GM-BMDC. MoDC and FL-DC responded well to TLR ligands including poly-IC (TLR2), Pam3Cys (TLR3), LPS (TLR4) and imiquimod (TLR7) by up-regulating MHC II and CD86. The generated DC and MPhi showed a stimulatory capacity for lymphocytes, which increased upon maturation with LPS. Taken together, our results are the basis for further characterization of canine DC subsets with respect to their role in inflammation and immune responses.
Resumo:
IL-15 has recently been shown to induce the differentiation of functional dendritic cells (DCs) from human peripheral blood monocytes. Since DCs lay in close proximity to epithelial cells in the airway mucosa, we investigated whether airway epithelial cells release IL-15 in response to inflammatory stimuli and thereby induce differentiation and maturation of DCs. Alveolar (A549) and bronchial (BEAS-2B) epithelial cells produced IL-15 spontaneously and in a time- and dose-dependent manner after stimulation with IL-1beta, IFN-gamma, or TNF-alpha. Airway epithelial cell supernatants induced an increase of IL-15Ralpha gene expression in ex vivo monocytes, and stimulated DCs enhanced their IL-15Ralpha gene expression up to 300-fold. Airway epithelial cell-conditioned media induced the differentiation of ex vivo monocytes into partially mature DCs (HLA-DR+, DC-SIGN+, CD14+, CD80-, CD83+, CD86+, CCR3+, CCR6(+), CCR7-). Based on their phenotypic (CD123+, BDCA2+, BDCA4+, BDCA1(-), CD1a-) and functional properties (limited maturation upon stimulation with LPS and limited capacity to induce T cell proliferation), these DCs resembled plasmacytoid DCs. The effects of airway epithelial cell supernatants were largely blocked by a neutralizing monoclonal antibody to IL-15. Thus, our results demonstrate that airway epithelial cell-conditioned media have the capacity to differentiate monocytes into functional DCs, a process substantially mediated by epithelial-derived IL-15.
Resumo:
Fine particles (0.1-2.5 microm in diameter) may cause increased pulmonary morbidity and mortality. We demonstrate with a cell culture model of the human epithelial airway wall that dendritic cells extend processes between epithelial cells through the tight junctions to collect particles in the "luminal space" and to transport them through cytoplasmic processes between epithelial cells across the epithelium or to transmigrate through the epithelium to take up particles on the epithelial surface. Furthermore, dendritic cells interacted with particle-loaded macrophages on top of the epithelium and with other dendritic cells within or beneath the epithelium to take over particles. By comparing the cellular interplay of dendritic cells and macrophages across epithelial monolayers of different transepithelial electrical resistance, we found that more dendritic cells were involved in particle uptake in A549 cultures showing a low transepithelial electrical resistance compared with dendritic cells in16HBE14o cultures showing a high transepithelial electrical resistance 10 min (23.9% versus 9.5%) and 4 h (42.1% versus 14.6%) after particle exposition. In contrast, the macrophages in A549 co-cultures showed a significantly lower involvement in particle uptake compared with 16HBE14o co-cultures 10 min (12.8% versus 42.8%) and 4 h (57.4% versus 82.7%) after particle exposition. Hence we postulate that the epithelial integrity influences the particle uptake by dendritic cells, and that these two cell types collaborate as sentinels against foreign particulate antigen by building a transepithelial interacting cellular network.
Resumo:
Abnormal activation of DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems is a compelling likelihood with significant implications in both cancer biology and treatment. Here, we show that due to a potential substrate switch, mutated variants of the receptor for hepatocyte growth factor Met, but not the wild-type form of the receptor, directly couple to the Abl tyrosine kinase and the Rad51 recombinase, two key signaling elements of homologous recombination-based DNA repair. Treatment of cells that express the mutated receptor variants with the Met inhibitor SU11274 leads, in a mutant-dependent manner, to a reduction of tyrosine phosphorylated levels of Abl and Rad51, impairs radiation-induced nuclear translocation of Rad51, and acts as a radiosensitizer together with the p53 inhibitor pifithrin-alpha by increasing cellular double-strand DNA break levels following exposure to ionizing radiation. Finally, we propose that in order to overcome a mutation-dependent resistance to SU11274, this aberrant molecular axis may alternatively be targeted with the Abl inhibitor, nilotinib.
Resumo:
We present a systematic study that defines molecular profiles of adjuvanticity and pyrogenicity induced by agonists of human Toll-like receptor molecules in vitro. Using P(3)CSK(4), Lipid A and Poly I:C as model adjuvants we show that all three molecules enhance the expansion of IFNgamma(+)/CD4(+) T cells from their naïve precursors following priming with allogeneic DC in vitro. In contrast, co-culture of naive CD4(+) T cells with allogeneic monocytes and TLR2/TLR4 agonists only resulted in enhanced T cell proliferation. Distinct APC molecular signatures in response to each TLR agonist underline the dual effect observed on T cell responses. Using protein and gene expression assays, we show that TNF-alpha and CXCL10 represent DC-restricted molecular signatures of TLR2/TLR4 and TLR3 activation, respectively, in sharp contrast to IL-6 produced by monocytes upon stimulation with P(3)CSK(4) and Lipid A. Furthermore, although all TLR agonists are able to up-regulate proIL-1beta specific gene in both cell types, only monocyte activation with Lipid A results in detectable IL-1beta release. These molecular profiles, provide a simple screen to select new immune enhancers of human Th1 responses suitable for clinical application.
Resumo:
Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA) induces a humoral immune response in tumor-bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs) from melanoma patients, we developed a pre-metastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM) and whole-mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs), which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy.
Resumo:
Exposing skin to UVB (280–320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase (Photosomes; Applied Genetics, Freeport, NY), which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosome treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320–400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function.
Resumo:
Thymidine dinucleotide (pTpT) stimulates melanogenesis in mammalian pigment cells and intact skin, mimicking the effects of UV irradiation and UV-mimetic DNA damage. Here it is shown that, in addition to tanning, pTpT induces a second photoprotective response, enhanced repair of UV-induced DNA damage. This enhanced repair results in a 2-fold increase in expression of a UV-damaged chloramphenicol acetyltransferase expression vector transfected into pTpT-treated skin fibroblasts and keratinocytes, compared with diluent-treated cells. Direct measurement of thymine dimers and (6–4) photoproducts by immunoassay demonstrates faster repair of both of these UV-induced photoproducts in pTpT-treated fibroblasts. This enhanced repair capacity also improves cell survival and colony-forming ability after irradiation. These effects of pTpT are accomplished, at least in part, by the up-regulation of a set of genes involved in DNA repair (ERCC3 and GADD45) and cell cycle inhibition (SDI1). At least two of these genes (GADD45 and SDI1) are known to be transcriptionally regulated by the p53 tumor suppressor protein. Here we show that pTpT activates p53, leading to nuclear accumulation of this protein, and also increases the specific binding of this transcription factor to its DNA consensus sequence.
Resumo:
We recently have shown that mice deficient for the 86-kDa component (Ku80) of the DNA-dependent protein kinase exhibit growth retardation and a profound deficiency in V(D)J (variable, diversity, and joining) recombination. These defects may be related to abnormalities in DNA metabolism that arise from the inability of Ku80 mutant cells to process DNA double-strand breaks. To further characterize the role of Ku80 in DNA double-strand break repair, we have generated embryonic stem cells and pre-B cells and examined their response to ionizing radiation. Ku80−/− embryonic stem cells are more sensitive than controls to γ-irradiation, and pre-B cells derived from Ku80 mutant mice display enhanced spontaneous and γ-ray-induced apoptosis. We then determined the effects of ionizing radiation on the survival, growth, and lymphocyte development in Ku80-deficient mice. Ku80−/− mice display a hypersensitivity to γ-irradiation, characterized by loss of hair pigmentation, severe injury to the gastrointestinal tract, and enhanced mortality. Exposure of newborn Ku80−/− mice to sublethal doses of ionizing radiation enhances their growth retardation and results in the induction of T cell-specific differentiation. However, unlike severe combined immunodeficient mice, radiation-induced T cell development in Ku80−/− mice is not accompanied by extensive thymocyte proliferation. The response of Ku80-deficient cell lines and mice to DNA-damaging agents provides important insights into the role of Ku80 in growth regulation, lymphocyte development, and DNA repair.
Resumo:
Dendritic cells are potent antigen-presenting cells that initiate primary immune responses. Although dendritic cells derive from bone marrow stem cells, the intermediate stages in their development remain unknown. In this study, plastic-adherent blood monocytes (CD14+, CD1a-) cultured for 7 days with granulocyte-monocyte colony-stimulating factor, interleukin 4, and tumor necrosis factor alpha were shown to differentiate into CD1a+ CD83+ dendritic cells. These cells displayed all phenotypic and morphologic characteristics of mature dendritic cells and were the most potent stimulatory cells in allogeneic mixed leukocyte reactions. The identification of specific culture conditions that generate large numbers of dendritic cells from purified monocytes uncovers an important step in dendritic cell maturation that will allow the further characterization of their role in autoimmune diseases, graft rejection, and human immunodeficiency virus infection.
Resumo:
The mutagen-sensitive CHO line irs1SF was previously isolated on the basis of hypersensitivity to ionizing radiation and was found to be chromosomally unstable as well as cross-sensitive to diverse kinds of DNA-damaging agents. The analysis of somatic cell hybrids formed between irs1SF and human lymphocytes implicated a human gene (defined as XRCC3; x-ray repair cross-complementing), which partially restored mitomycin C resistance to the mutant. A functional cDNA that confers mitomycin C resistance was transferred to irs1SF cells by transforming them with an expression cDNA library and obtaining primary and secondary transformants. Functional cDNA clones were recovered from a cosmid library prepared from a secondary transformant. Transformants also showed partial correction of sensitivity to cisplatin and gamma-rays, efficient correction of chromosomal instability, and substantially improved plating efficiency and growth rate. The XRCC3 cDNA insert is approximately 2.5 kb and detects an approximately 3.0-kb mRNA on Northern blots. The cDNA was mapped by fluorescence in situ hybridization to human chromosome 14q32.3, which was consistent with the chromosome concordance data of two independent hybrid clone panels.
Resumo:
Noroviruses are understudied because these important enteric pathogens have not been cultured to date. We found that the norovirus murine norovirus 1 (MNV-1) infects macrophage-like cells in vivo and replicates in cultured primary dendritic cells and macrophages. MNV-1 growth was inhibited by the interferon-alphabeta receptor and STAT-1, and was associated with extensive rearrangements of intracellular membranes. An amino acid substitution in the capsid protein of serially passaged MNV-1 was associated with virulence attenuation in vivo. This is the first report of replication of a norovirus in cell culture. The capacity of MNV-1 to replicate in a STAT-1-regulated fashion and the unexpected tropism of a norovirus for cells of the hematopoietic lineage provide important insights into norovirus biology.
Resumo:
The lineage of dendritic cells (DC), and in particular their relationship to monocytes and macrophages, remains obscure. Furthermore, the requirement for the macrophage growth factor CSF-1 during DC homeostasis is unclear. Using a transgenic mouse in which the promoter for the CSF-1R (c-fms) directs the expression of enhanced GFP in cells of the myeloid lineage, we determined that although the c-fms promoter is inactive in DC precursors, it is up-regulated in all DC subsets during differentiation. Furthermore, plasmacytoid DC and all CD11c(high) DC subsets are reduced by 50-70% in CSF-1-deficient osteopetrotic mice, confirming that CSF-1 signaling is required for the optimal differentiation of DC in vivo. These data provide additional evidence that the majority of tissue DC is of myeloid origin during steady state and supports a close relationship between DC and macrophage biology in vivo.
Resumo:
Exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of congenital malformations including heart, skeletal and most frequently neural tube defects. Although the mechanisms contributing to its teratogenesis are not well understood, VPA was previously shown to increase homologous recombination (HR)-mediated DNA repair and decrease protein expression of the transcription factor NF-κB/p65. The studies in this thesis utilized in vivo and in vitro models to evaluate the expression of HR mediators, investigate the implications of decreased p65 including DNA binding and transcriptional activation, and the expression and histone acetyltransferase activity of Cbp/p300 with an aim to provide mechanistic insight into VPA-mediated alterations. The first study demonstrated that following maternal administration of VPA, mouse embryonic mRNA expression of HR mediators Rad51, Brca1 and Brca2 exhibited temporal and tissue-specific alterations. Protein expression of Rad51 was similarly altered and preceded increased cleavage of caspase-3 and PARP; indicative of apoptosis. The second study confirms previous findings of decreased total cellular p65 protein using P19 cells, but is the first to demonstrate that nuclear p65 protein is unchanged. NF-κB DNA binding was decreased following VPA exposure and maybe mediated by decreased p50 protein, which dimerizes with p65 prior to DNA binding. Transcriptional activity of NF-κB was also increased with VPA exposure which was not due to increased p65 phosphorylation at Ser276. Furthermore, the transcriptional activation capacity was unaffected by VPA exposure as combined exposure to VPA and TNFα additively increased NF-κB activity. The third study demonstrated that VPA exposure in P19 cells decreased Cbp/p300 total cellular and nuclear protein attributed primarily to ubiquitin proteasome-mediated degradation. Histone acetyltransferase (HAT) activity of p300 was decreased proportionately to nuclear protein following VPA exposure. Inhibition of Cbp/p300 HAT activity decreased p65 total cellular protein, increased caspase-3 cleavage and ROS similar to VPA exposures. Furthermore, pre-treatment with the antioxidant enzyme catalase attenuated the increase in caspase-3 cleavage, but not p65 protein. Overall, this thesis demonstrates that VPA exposure impacts the expression and activity of the transcription factor NF-κB and transcriptional co-activators/HATs Cbp/p300, which has implications for downstream VPA targets including Rad51, Brca1 and Brca2.
Resumo:
The DNA damage response encompasses a complex series of signaling pathways that function to regulate and facilitate the repair of damaged DNA. Recent studies have shown that the repair of transcriptionally inactive chromatin, named heterochromatin, is dependent upon the phosphorylation of the co-repressor, Krüppel-associated box (KRAB) domain-associated protein (KAP-1), by the ataxia telangiectasia-mutated (ATM) kinase. Co-repressors, such as KAP-1, function to regulate the rigid structure of heterochromatin by recruiting histone-modifying enzymes, such HDAC1/2, SETDB1, and nucleosome-remodeling complexes such as CHD3. Here, we have characterized a phosphorylation site in the HP1-binding domain of KAP-1, Ser-473, which is phosphorylated by the cell cycle checkpoint kinase Chk2. Expression of a nonphosphorylatable S473A mutant conferred cellular sensitivity to DNA-damaging agents and led to defective repair of DNA double-strand breaks in heterochromatin. In addition, cells expressing S473A also displayed defective mobilization of the HP1-β chromodomain protein. The DNA repair defect observed in cells expressing S473A was alleviated by depletion of HP1-β, suggesting that phosphorylation of KAP-1 on Ser-473 promotes the mobilization of HP1-β from heterochromatin and subsequent DNA repair. These results suggest a novel mechanism of KAP-1-mediated chromatin restructuring via Chk2-regulated HP1-β exchange from heterochromatin, promoting DNA repair.