974 resultados para monoamine oxidase


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the exact cause of neuronal loss in Parkinson's disease is not known, evidence points to oxidative stress and the production of reactive oxygen species as the main events that occur in the substantia nigra pars compacta of the brain of parkinsonians. EGb761 is an extract of the leaves from the Ginkgo biloba tree that has been reported as an antioxidant and neuroprotective agent. The objective of this work was to perform a systematic review of the studies that analysed the effect of Ginkgo biloba extract on Parkinson's disease or Parkinsonism. This research was conducted using the following databases: Medline, PsycInfo, Cinahl, Sigle, Lilacs, Scielo, Cochrane Library, and Embase. Initially, we selected 32 articles. After a more detailed analysis, only 10 articles remained. One of the hypotheses for the positive effect of EGb761 on Parkinson's disease is the reduction or inhibition of monoamine-oxidase activity. This enzyme metabolises dopamine, inducing the formation of free radicals, which in turn damage nigrostriatal neurons. Another hypothesis is that the neuroprotective effect of EGb761 against 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and MPP+ toxins. As there are few studies on the effect of EGb761 on humans, this review could contribute new data to further the discussion of this issue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ayahuasca is a hallucinogenic brew traditionally used by Northwestern Amazonian indigenous groups for therapeutic purposes. It is prepared by the decoction of Banisteriopsis caapi with the leaves of Psychotria viridis. Banisteriopsis caapi contains β-carbolines that are inhibitors of monoamine oxidase and P. viris is rich in dimethyltryptamine, a 5-HT(1A/2A/2C) agonist. Acute ayahuasca administration produces moderate cardiovascular effects in healthy volunteers, but information regarding long-term use is lacking. This study investigated the effects of ayahuasca (2-4 mL/kg) in the rat aorta after acute and chronic (14 days) administration. Ayahuasca caused flattening and stretching of vascular smooth muscle cells and changes in the arrangement and distribution of collagen and elastic fibers. Chronic treatment with the higher dose significantly increased media thickness and the ratio of media thickness to lumen diameter. More research is needed on the cardiovascular function of long-term ayahuasca consumers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hallucinogenic brew Ayahuasca, a rich source of serotonergic agonists and reuptake inhibitors, has been used for ages by Amazonian populations during religious ceremonies. Among all perceptual changes induced by Ayahuasca, the most remarkable are vivid seeings. During such seeings, users report potent imagery. Using functional magnetic resonance imaging during a closed-eyes imagery task, we found that Ayahuasca produces a robust increase in the activation of several occipital, temporal, and frontal areas. In the primary visual area, the effect was comparable in magnitude to the activation levels of natural image with the eyes open. Importantly, this effect was specifically correlated with the occurrence of individual perceptual changes measured by psychiatric scales. The activity of cortical areas BA30 and BA37, known to be involved with episodic memory and the processing of contextual associations, was also potentiated by Ayahuasca intake during imagery. Finally, we detected a positive modulation by Ayahuasca of BA 10, a frontal area involved with intentional prospective imagination, working memory and the processing of information from internal sources. Therefore, our results indicate that Ayahuasca seeings stem from the activation of an extensive network generally involved with vision, memory, and intention. By boosting the intensity of recalled images to the same level of natural image, Ayahuasca lends a status of reality to inner experiences. It is therefore understandable why Ayahuasca was culturally selected over many centuries by rain forest shamans to facilitate mystical revelations of visual nature. Hum Brain Mapp, 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Depression is the most frequent mental disorder in older people, often causing emotional distress and reduced quality of life. Despite its clinical significance, depression remains underdiagnosed and inadequately treated in older patients. Regarding prognosis, data suggest that almost 70% of patients, treated long enough and with appropriate doses, recover from an index episode of depression. Antidepressants are efficient for treating depressed outpatients with several comorbid physical diseases as well as hospitalized patients, with selective serotonin reuptake inhibitors being the antidepressants of choice for older patients. Available data can guide pharmacological treatment in both the acute and maintenance stages, but further research is required to guide clinical strategies when remission is not achieved. Approaches for the management of resistance to treatment are summarized, including optimization strategies, drug changes, algorithms, and combined and augmentation pharmacological treatments. Finally, additional therapeutic choices such as electroconvulsive therapy, transcranial magnetic stimulation, and integrated psychotherapy are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we evaluated the in vivo characteristics of a new monoamine oxidase type B (MAO-B) radioligand, [¹⁸F]fluorodeprenyl, by positron emission tomography (PET) in two cynomolgus monkeys. The brain uptake of [¹⁸F]fluorodeprenyl was more than 7% (600% SUV) of the total injected radioactivity and similar to that of [¹¹C]deprenyl, an established MAO-B radioligand. The highest uptake was observed in the striatum, one of the MAO-B-rich regions, with a peak at approximately 2-3 min after injection, followed by lower uptake in the thalamus and the cortex and lowest uptake in the cerebellum. Brain uptake of [¹⁸F]fluorodeprenyl was largely inhibited by preadministration of the MAO-B inhibitor, L-deprenyl, whereas clorgyline, a MAO Type A blocker, had no significant inhibitory effect, thus demonstrating selectivity for MAO-B. [¹⁸F]Fluorodeprenyl showed relatively slow metabolism with the presence of two radiometabolite peaks with similar retention time as the labeled metabolites of [¹¹C]deprenyl. These results suggest that [¹⁸F]fluorodeprenyl is a potential PET radioligand for visualization of MAO-B activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The clinical use of the alkylating oxazaphosphorine ifosfamide is hampered by a potentially severe encephalopathy. S-carboxymethylcysteine (SCMC), a metabolite of ifosfamide (IF), activates the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor, causes neuronal acidification, and could thus be responsible for the encephalopathy. Since the presence of SCMC in brain has not been documented following administration of IF, SCMC was measured in the brain of mice following both the individual i.p. administration of IF and SCMC. SCMC was found in a concentration of 108.2 +/- 29.7 nmol/g following IF, but was detectable at much lower levels following the administration of SCMC (21.1 +/- 21.2 nmol/g). Together with the observation that the concentration of SCMC was 10-fold higher in liver than in brain 1h after administration of SCMC, these findings suggest that the SCMC found after IF was formed in the brain in situ. The concentration of glutamic acid was similar in IF and SCMC treated animals. Methylene blue, which is used clinically to treat and to prevent IF encephalopathy, did not decrease the formation of SCMC in brain. By inhibiting monoamine oxidase activity it did, however, markedly increase the concentration of serotonin in brain which could modulate the effects of SCMC on AMPA/kainate receptors. Thus, SCMC is present in brain following the administration of IF and could contribute to the IF-associated encephalopathy by activation of AMPA/kainate receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin is a chemical inducer of Parkinson's disease (PD) whereas N-methylated beta-carbolines and isoquinolines are naturally occurring analogues of MPTP involved in PD. This research has studied the oxidation of MPTP by human CYP2D6 (CYP2D6*1 and CYP2D6*10 allelic variants) as well as by a mixture of cytochrome P450s-resembling HLM, and the products generated compared with those afforded by human monoamine oxidase (MAO-B). MPTP was efficiently oxidized by CYP2D6 to two main products: MPTP-OH (p-hydroxylation) and PTP (N-demethylation), with turnover numbers of 10.09 min-1 and Km of 79.36+/-3 microM (formation of MPTP-OH) and 18.95 min-1 and Km 69.6+/-2.2 microM (PTP). Small amounts of dehydrogenated toxins MPDP+ and MPP+ were also detected. CYP2D6 competed with MAO-B for the oxidation of MPTP. MPTP oxidation by MAO-B to MPDP+ and MPP+ toxins (bioactivation) was up to 3-fold higher than CYP2D6 detoxification to PTP and MPTP-OH. Several N-methylated beta-carbolines and isoquinolines were screened for N-demethylation (detoxification) that was not significantly catalyzed by CYP2D6 or the P450s mixture. In contrast, various beta-carbolines were efficiently hydroxylated to hydroxy-beta-carbolines by CYP2D6. Thus, N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline (a close MPTP analog) was highly hydroxylated to 6-hydroxy-N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline and a corresponding 7-hydroxy-derivative. Thus, CYP2D6 could participate in the bioactivation and/or detoxification of these neuroactive compounds by an active hydroxylation pathway. The CYP2D6*1 enzymatic variant exhibited much higher metabolism of both MPTP and N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline than the CYP2D6*10 variant, highlighting the importance of CYP2D6 polymorphism in the oxidation of these toxins. Altogether, these results suggest that CYP2D6 can play an important role in the metabolic outcome of both MPTP and beta-carbolines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The serotonin (5-hydroxtryptamine, 5-HT) system plays a role in analgesia and emesis. The aim of this study was to test whether opioids or ketamine inhibit the human 5-HT transporter and whether this increases free plasma 5-HT concentrations. HEK293 cells, stably transfected with the human 5-HT transporter cDNA, were incubated with morphine, hydromorphone, fentanyl, alfentanil, pethidine (meperidine), tramadol, ketamine, and the reference substance citalopram (specific 5-HT transporter inhibitor). The uptake of [(3)H]5-HT was measured by liquid scintillation counting. In a second series of experiments, study drugs were incubated with plasma of ten healthy blood donors and change of 5-HT plasma-concentrations were measured (ELISA). The end point was the inhibition of the 5-HT transporter by different analgesics either in HEK293 cells or in human platelets ex vivo. Tramadol, pethidine, and ketamine suppressed [(3)H]5-HT uptake dose-dependently with an IC50 of 1, 20.9, and 230 μM, respectively. These drugs also prevented 5-HT uptake in platelets with an increase in free plasma 5-HT. Free 5-HT concentrations in human plasma were increased by citalopram 1 μM, tramadol 20 μM, pethidine 30 μM, and ketamine 100 μM to 280 [248/312]%, 269 [188/349]%, and 149 [122/174]%, respectively, compared to controls without any co-incubation (means [95 % CI]; all p < 0.005). No change in both experimental settings was observed for the other opioids. Tramadol and pethidine inhibited the 5-HT transporter in HEK293 cells and platelets. This inhibition may contribute to serotonergic effects when these opioids are given in combination, e.g., with monoamine oxidase inhibitors or selective serotonin reuptake inhibitors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polar bears (Ursus maritimus) are exposed to high concentrations of mercury because they are apex predators in the Arctic ecosystem. Although mercury is a potent neurotoxic heavy metal, it is not known whether current exposures are of neurotoxicological concern to polar bears. We tested the hypotheses that polar bears accumulate levels of mercury in their brains that exceed the estimated lowest observable adverse effect level (20 µg/g dry wt) for mammalian wildlife and that such exposures are associated with subtle neurological damage, as determined by measuring neurochemical biomarkers previously shown to be disrupted by mercury in other high-trophic wildlife. Brain stem (medulla oblongata) tissues from 82 polar bears subsistence hunted in East Greenland were studied. Despite surprisingly low levels of mercury in the brain stem region (total mercury = 0.36 ± 0.12 µg/g dry wt), a significant negative correlation was measured between N-methyl-D-aspartate (NMDA) receptor levels and both total mercury (r = -0.34, p < 0.01) and methylmercury (r = -0.89, p < 0.05). No relationships were observed among mercury, selenium, and several other neurochemical biomarkers (dopamine-2, gamma-aminobutyric acid type A, muscarinic cholinergic, and nicotinic cholinergic receptors; cholinesterase and monoamine oxidase enzymes). These data show that East Greenland polar bears do not accumulate high levels of mercury in their brain stems. However, decreased levels of NMDA receptors could be one of the most sensitive indicators of mercury's subclinical and early effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurotrophic factor deprivation causes apoptosis by a mechanism that requires macromolecular synthesis. This fact suggests that gene expression is necessary to achieve cell death. To identify mRNA that is expressed in apoptotic cells we used subtractive hybridization with cDNA prepared from neuronal pheochromocytoma cells. Monoamine oxidase (MAO) expression was increased in cells during nerve growth factor withdrawal-induced apoptosis. The increased apoptosis and induction of MAO was prevented by inhibition of the p38 mitogen-activated protein (MAP) kinase pathway. MAO may contribute to the apoptotic process because inhibition of MAO activity suppressed cell death. Together, these data indicate that MAO may be a target of pro-apoptotic signal transduction by the p38 MAP kinase pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To summarize current knowledge about genetic susceptibility to mood disorders and examine ethical and policy issues that will need to be addressed if robustly replicated susceptibility alleles lead to proposals to screen and intervene with persons at increased genetic risk of developing mood disorders. Method: Empirical studies and reviews of the genetics of unipolar and bipolar depression were collected via MEDLINE and psycINFO database searches. Results: A number of candidate genes for depression have been identified, each of which increases the risk of mood disorders two- or threefold. None of the associations between these alleles and mood disorders have been consistently reported to date. Conclusions: Screening the population for genetic susceptibility to mood disorders is unlikely to be a practically useful policy (given plausible assumptions). Until there are effective treatments for persons at increased risk, screening is arguably unethical. Screening within affected families to advise on risks of developing depression would entail screening children and adolescents, raising potentially serious ethical issues of consent and stigmatization. Genetic research on depression should continue under appropriate ethical guidelines that protect the interests of research participants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied the hypothesis that 6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) is neurotoxic. Salsolinol induced a significant time and dose related inhibition of 3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazoyl blue (MTT) reduction, and increased lactate dehydrogenase release (LDH) release from human SH-SY5Y neuroblastoma cells, at concentrations within the range of 1-methyl-4-phenylpyridinium (MPP+) cytotoxicity, in vitro. Cytotoxicity was not inhibited by the addition of antioxidants, monoamine oxidase inhibitors or imipramine. In confluent monolayers, salsolinol stimulated catecholamine uptake with EC50 values of 17 muM and 11 muM, for noradrenaline and dopamine, respectively. Conversely, at concentrations above 100 muM, salsolinol inhibited the uptake of noradrenaline and dopamine, with IC50 values of 411 muM and 379 muM, respectively. The inhibition of catecholamine uptake corresponded to the increase displacement of [3H]nisoxetine from the uptake 1 site by salsolinol, as the Ki (353 muM) for displacement was similar to the IC50 (411 and 379 muM) for uptake. Salsolinol stimulated catecholamine uptake does not involve the uptake recognition site, or elevation of cAMP, cGMP, or inhibition of protein kinase C. Salsolinol also inhibited both carbachol (1 mM) and K+ (100 mM, Na+ adjusted) evoked released of noradrenaline from SH-SY5Y cells, with IC50 values of 500 muM and 120 muM, respectively. In conclusion, salsolinol appears to be cytotoxic to SH-SY5Y cells, via a mechanism that does not require uptake 1, bioactivation by monoamine oxidase, or membrane based free radical damage. The effects of salsolinol on catecholamine uptake, and the mechanism of toxicity require further investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of agents with differing selectivity profiles for the non-a2 adrenoceptor binding site (NAIBS), imidazoline preferring receptor (IPR) and a2-adrenoceptor were employed in a series of behavioural and neurochemical experiments to determine a functional role for the former two sites. The highly selective NAIBS ligand RX801 077 produced an increase in rat brain extracellular noradrenaline (NA) levels, as determined by the technique of in vivo microdialysis, which may underlie its ability to produce a discriminable cue in the same species. This increase in NA may be due to a suggested link between the NAIBS and the monoamine oxidase inhibitor (MAOI) activity of RX801 077. For instance, the RX801 077 cue was substituted for by the MAOI drugs pargyline and moclobemide, which themselves down regulate NAIBS when administered chronically. RX811 059 substituted for the RX801 077 cue which may be due its ability to stimulate NA release via its activity as a highly selective a2-adrenoceptor antagonist. An effect upon NA output may also explain the ability of RX801 077 to 'mimic' the anti-immobility effect of the antidepressant drug desmethylimipramine (DMJ) in the forced swimming test. Further studies are therefore required to examine a possible role for the NAIBS in the treatment of depression. Discriminable cues were also produced by RX811 059 and the a2- adrenoceptor agonist clonidine, probably as a consequence of their respective ability to stimulate and inhibit NA output via their opposing activity at a2-adrenoceptors. The IPR has been suggested to play a role in mediating the hypotensive effect of clonidine, although a precise role was unable to be established for this site in the present studies due to the unavailability of highly selective IPA agents.