932 resultados para moment closure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conditional Moment Closure (CMC) is a suitable method for predicting scalars such as carbon monoxide with slow chemical time scales in turbulent combustion. Although this method has been successfully applied to non-premixed combustion, its application to lean premixed combustion is rare. In this study the CMC method is used to compute piloted lean premixed combustion in a distributed combustion regime. The conditional scalar dissipation rate of the conditioning scalar, the progress variable, is closed using an algebraic model and turbulence is modelled using the standard k-e{open} model. The conditional mean reaction rate is closed using a first order CMC closure with the GRI-3.0 chemical mechanism to represent the chemical kinetics of methane oxidation. The PDF of the progress variable is obtained using a presumed shape with the Beta function. The computed results are compared with the experimental measurements and earlier computations using the transported PDF approach. The results show reasonable agreement with the experimental measurements and are consistent with the transported PDF computations. When the compounded effects of shear-turbulence and flame are strong, second order closures may be required for the CMC. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CFD simulations of the 75 mm, hydrocyclone of Hsieh (1988) have been conducted using Fluent TM. The simulations used 3-dimensional body fitted grids. The simulations were two phase simulations where the air core was resolved using the mixture (Manninen et al., 1996) and VOF (Hirt and Nichols, 1981) models. Velocity predictions from large eddy simulations (LES), using the Smagorinsky-Lilly sub grid scale model (Smagorinsky, 1963; Lilly, 1966) and RANS simulations using the differential Reynolds stress turbulence model (Launder et al., 1975) were compared with Hsieh's experimental velocity data. The LES simulations gave very good agreement with Hsieh's data but required very fine grids to predict the velocities correctly in the bottom of the apex. The DRSM/RANS simulations under predicted tangential velocities, and there was little difference between the velocity predictions using the linear (Launder, 1989) and quadratic (Speziale et al., 1991) pressure strain models. Velocity predictions using the DRSM turbulence model and the linear pressure strain model could be improved by adjusting the pressure strain model constants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We implement conditional moment closure (CMC) for simulation of chemical reactions in laminar chaotic flows. The CMC approach predicts the expected concentration of reactive species, conditional upon the concentration of a corresponding nonreactive scalar. Closure is obtained by neglecting the difference between the local concentration of the reactive scalar and its conditional average. We first use a Monte Carlo method to calculate the evolution of the moments of a conserved scalar; we then reconstruct the corresponding probability density function and dissipation rate. Finally, the concentrations of the reactive scalars are determined. The results are compared (and show excellent agreement) with full numerical simulations of the reaction processes in a chaotic laminar flow. This is a preprint of an article published in AlChE Journal copyright (2007) American Institute of Chemical Engineers: http://www3.interscience.wiley.com/

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the last two decades, there has been an increasing awareness of, and interest in, the use of spatial moment techniques to provide insight into a range of biological and ecological processes. Models that incorporate spatial moments can be viewed as extensions of mean-field models. These mean-field models often consist of systems of classical ordinary differential equations and partial differential equations, whose derivation, at some point, hinges on the simplifying assumption that individuals in the underlying stochastic process encounter each other at a rate that is proportional to the average abundance of individuals. This assumption has several implications, the most striking of which is that mean-field models essentially neglect any impact of the spatial structure of individuals in the system. Moment dynamics models extend traditional mean-field descriptions by accounting for the dynamics of pairs, triples and higher n-tuples of individuals. This means that moment dynamics models can, to some extent, account for how the spatial structure affects the dynamics of the system in question.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mathematical models describing the movement of multiple interacting subpopulations are relevant to many biological and ecological processes. Standard mean-field partial differential equation descriptions of these processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment dynamics model with a traditional mean-field model confirms that the moment dynamics approach always outperforms the traditional mean-field approach. To provide more general insight we summarise the performance of the moment dynamics model and the traditional mean-field model over a wide range of parameter regimes. These results help distinguish between those situations where spatial correlation effects are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental investigation has been made of a round, non-buoyant plume of nitric oxide, NO, in a turbulent grid flow of ozone, 03, using the Turbulent Smog Chamber at the University of Sydney. The measurements have been made at a resolution not previously reported in the literature. The reaction is conducted at non-equilibrium so there is significant interaction between turbulent mixing and chemical reaction. The plume has been characterized by a set of constant initial reactant concentration measurements consisting of radial profiles at various axial locations. Whole plume behaviour can thus be characterized and parameters are selected for a second set of fixed physical location measurements where the effects of varying the initial reactant concentrations are investigated. Careful experiment design and specially developed chemilurninescent analysers, which measure fluctuating concentrations of reactive scalars, ensure that spatial and temporal resolutions are adequate to measure the quantities of interest. Conserved scalar theory is used to define a conserved scalar from the measured reactive scalars and to define frozen, equilibrium and reaction dominated cases for the reactive scalars. Reactive scalar means and the mean reaction rate are bounded by frozen and equilibrium limits but this is not always the case for the reactant variances and covariances. The plume reactant statistics are closer to the equilibrium limit than those for the ambient reactant. The covariance term in the mean reaction rate is found to be negative and significant for all measurements made. The Toor closure was found to overestimate the mean reaction rate by 15 to 65%. Gradient model turbulent diffusivities had significant scatter and were not observed to be affected by reaction. The ratio of turbulent diffusivities for the conserved scalar mean and that for the r.m.s. was found to be approximately 1. Estimates of the ratio of the dissipation timescales of around 2 were found downstream. Estimates of the correlation coefficient between the conserved scalar and its dissipation (parallel to the mean flow) were found to be between 0.25 and the significant value of 0.5. Scalar dissipations for non-reactive and reactive scalars were found to be significantly different. Conditional statistics are found to be a useful way of investigating the reactive behaviour of the plume, effectively decoupling the interaction of chemical reaction and turbulent mixing. It is found that conditional reactive scalar means lack significant transverse dependence as has previously been found theoretically by Klimenko (1995). It is also found that conditional variance around the conditional reactive scalar means is relatively small, simplifying the closure for the conditional reaction rate. These properties are important for the Conditional Moment Closure (CMC) model for turbulent reacting flows recently proposed by Klimenko (1990) and Bilger (1993). Preliminary CMC model calculations are carried out for this flow using a simple model for the conditional scalar dissipation. Model predictions and measured conditional reactive scalar means compare favorably. The reaction dominated limit is found to indicate the maximum reactedness of a reactive scalar and is a limiting case of the CMC model. Conventional (unconditional) reactive scalar means obtained from the preliminary CMC predictions using the conserved scalar p.d.f. compare favorably with those found from experiment except where measuring position is relatively far upstream of the stoichiometric distance. Recommendations include applying a full CMC model to the flow and investigations both of the less significant terms in the conditional mean species equation and the small variation of the conditional mean with radius. Forms for the p.d.f.s, in addition to those found from experiments, could be useful for extending the CMC model to reactive flows in the atmosphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Random walk models based on an exclusion process with contact effects are often used to represent collective migration where individual agents are affected by agent-to-agent adhesion. Traditional mean field representations of these processes take the form of a nonlinear diffusion equation which, for strong adhesion, does not predict the averaged discrete behavior. We propose an alternative suite of mean-field representations, showing that collective migration with strong adhesion can be accurately represented using a moment closure approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this paper is to develop a second-moment closure with a near-wall turbulent pressure diffusion model for three-dimensional complex flows, and to evaluate the influence of the turbulent diffusion term on the prediction of detached and secondary flows. A complete turbulent diffusion model including a near-wall turbulent pressure diffusion closure for the slow part was developed based on the tensorial form of Lumley and included in a re-calibrated wall-normal-free Reynolds-stress model developed by Gerolymos and Vallet. The proposed model was validated against several one-, two, and three-dimensional complex flows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological systems involving proliferation, migration and death are observed across all scales. For example, they govern cellular processes such as wound-healing, as well as the population dynamics of groups of organisms. In this paper, we provide a simplified method for correcting mean-field approximations of volume-excluding birth-death-movement processes on a regular lattice. An initially uniform distribution of agents on the lattice may give rise to spatial heterogeneity, depending on the relative rates of proliferation, migration and death. Many frameworks chosen to model these systems neglect spatial correlations, which can lead to inaccurate predictions of their behaviour. For example, the logistic model is frequently chosen, which is the mean-field approximation in this case. This mean-field description can be corrected by including a system of ordinary differential equations for pair-wise correlations between lattice site occupancies at various lattice distances. In this work we discuss difficulties with this method and provide a simplication, in the form of a partial differential equation description for the evolution of pair-wise spatial correlations over time. We test our simplified model against the more complex corrected mean-field model, finding excellent agreement. We show how our model successfully predicts system behaviour in regions where the mean-field approximation shows large discrepancies. Additionally, we investigate regions of parameter space where migration is reduced relative to proliferation, which has not been examined in detail before, and our method is successful at correcting the deviations observed in the mean-field model in these parameter regimes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lifted turbulent jet diffusion flame is simulated using Conditional Moment Closure (CMC). Specifically, the burner configuration of Cabra et al. [R. Cabra, T. Myhrvold, J.Y. Chen. R.W. Dibble, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29 (2002) 1881-1887] is chosen to investigate H-2/N-2 jet flame supported by a vitiated coflow of products of lean H-2/air combustion. A 2D, axisymmetric flow-model fully coupled with the scalar fields, is employed. A detailed chemical kinetic scheme is included, and first order CIVIC is applied. Simulations are carried out for different jet velocities and coflow temperatures (T-c) The predicted liftoff generally agrees with experimental data, as well as joint-PDF results. Profiles of mean scalar fluxes in the mixture fraction space, for T-c = 1025 and 1080 K reveal that (1) Inside the flame zone, the chemical term balances the molecular diffusion term, and hence the Structure is of a diffusion flamelet for both cases. (2) In the pre-flame zone, the structure depends on the coflow temperature: for the 1025 K case, the chemical term being small, the advective term balances the axial turbulent diffusion term. However, for the 1080 K case. the chemical term is large and balances the advective term, the axial turbulent diffusion term being small. It is concluded that, lift-off is controlled (a) by turbulent premixed flame propagation for low coflow temperature while (b) by autoignition for high coflow temperature. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A computer program has been developed for the prediction of buoyancy-driven laminar and turbulent flow in rectangular air-filled two-dimensional cavities with differentially heated side walls. Laminar flow predictions for a square cavity and Rayleigh numbers from Ra = 10^3 up to the onset of unsteady flow have been obtained. Accurate solutions for Ra = 5 x 10^6, 10^7, 5 x 10^7 and 10^8 are presented and an estimate for the critical Rayleigh number at which the steady laminar flow becomes unsteady is given for this geometry. Numerical predictions of turbulent flow have been obtained for RaH~0(10^9 -10^11 ) and compared with existing experimental data. A previously developed second moment closure model (Behnia et al. 1987) has been used to model the turbulence. Results indicate that a second moment closure model is capable of predicting the observed flow features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"This chapter discusses laminar and turbulent natural convection in rectangular cavities. Natural convection in rectangular two-dimensional cavities has become a standard problem in numerical heat transfer because of its relevance in understanding a number of problems in engineering. Current research identified a number of difficulties with regard to the numerical methods and the turbulence modeling for this class of flows. Obtaining numerical predictions at high Rayleigh numbers proved computationally expensive such that results beyond Ra ∼ 1014 are rarely reported. The chapter discusses a study in which it was found that turbulent computations in square cavities can't be extended beyond Ra ∼ O (1012) despite having developed a code that proved very efficient for the high Ra laminar regime. As the Rayleigh number increased, thin boundary layers began to form next to the vertical walls, and the central region became progressively more stagnant and highly stratified. Results obtained for the high Ra laminar regime were in good agreement with existing studies. Turbulence computations, although of a preliminary nature, indicated that a second moment closure model was capable of predicting the experimentally observed flow features."--Publisher Summary

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, direct numerical simulation of autoignition in an initially non-premixed medium under isotropic, homogeneous, and decaying turbulence is presented. The pressure-based method developed herein is a spectral implementation of the sequential steps followed in the predictor-corrector type of algorithms; it includes the effects of density fluctuations caused by spatial inhomogeneities ill temperature and species. The velocity and pressure field are solved in the spectral space while the scalars and density field are solved in the physical space. The presented results reveal that the autoignition spots originate and evolve at locations where (1) the composition corresponds to a small range around a specific mixture fraction, and (2) the conditional scaler dissipation rate is low. A careful examination of the data obtained indicates that the autoignition spots originate in the vortex cores, and the hot gases travel outward as combustion progresses. Hence, the applicability of the transient laminar flamelet model for this problem is questioned. The dependence of autoignition characteristics on parameters such as (1) die initial eddy-turnover time and (2) the initial ratio of length scale of scalars to that of velocities are investigated. Certain implications of new results on the conditional moment closure modeling are discussed.