958 resultados para molecular regulation
Resumo:
The molecular regulation of horn growth in ruminants is still poorly understood. To investigate this process, we collected 1019 hornless (polled) animals from different cattle breeds. High-density SNP genotyping confirmed the presence of two different polled associated haplotypes in Simmental and Holstein cattle co-localized on BTA 1. We refined the critical region of the Simmental polled mutation to 212 kb and identified an overlapping region of 932 kb containing the Holstein polled mutation. Subsequently, whole genome sequencing of polled Simmental and Holstein cows was used to determine polled associated genomic variants. By genotyping larger cohorts of animals with known horn status we found a single perfectly associated insertion/deletion variant in Simmental and other beef cattle confirming the recently published possible Celtic polled mutation. We identified a total of 182 sequence variants as candidate mutations for polledness in Holstein cattle, including an 80 kb genomic duplication and three SNPs reported before. For the first time we showed that hornless cattle with scurs are obligate heterozygous for one of the polled mutations. This is in contrast to published complex inheritance models for the bovine scurs phenotype. Studying differential expression of the annotated genes and loci within the mapped region on BTA 1 revealed a locus (LOC100848215), known in cow and buffalo only, which is higher expressed in fetal tissue of wildtype horn buds compared to tissue of polled fetuses. This implicates that the presence of this long noncoding RNA is a prerequisite for horn bud formation. In addition, both transcripts associated with polledness in goat and sheep (FOXL2 and RXFP2), show an overexpression in horn buds confirming their importance during horn development in cattle.
Resumo:
The fungus Trichoderma harzianum is a potent mycoparasite of various plant pathogenic fungi. We have studied the molecular regulation of mycoparasitism in the host/mycoparasite system Botrytis cinerea/T. harzianum. Protein extracts, prepared from various stages of mycoparasitism, were used in electrophoretic mobility-shift assays (EMSAs) with two promoter fragments of the ech-42 (42-kDa endochitinase-encoding) gene of T. harzianum. This gene was chosen as a model because its expression is triggered during mycoparasitic interaction [Carsolio, C., Gutierrez, A., Jimenez, B., van Montagu, M. & Herrera-Estrella, A. (1994) Proc. Natl. Acad. Sci. USA 91, 10903–10907]. All cell-free extracts formed high-molecular weight protein–DNA complexes, but those obtained from mycelia activated for mycoparasitic attack formed a complex with greater mobility. Competition experiments, using oligonucleotides containing functional and nonfunctional consensus sites for binding of the carbon catabolite repressor Cre1, provided evidence that the complex from nonmycoparasitic mycelia involves the binding of Cre1 to both fragments of the ech-42 promoter. The presence of two and three consensus sites for binding of Cre1 in the two ech-42 promoter fragments used is consistent with these findings. In contrast, the formation of the protein–DNA complex from mycoparasitic mycelia is unaffected by the addition of the competing oligonucleotides and hence does not involve Cre1. Addition of equal amounts of protein of cell-free extracts from nonmycoparasitic mycelia converted the mycoparasitic DNA–protein complex into the nonmycoparasitic complex. The addition of the purified Cre1::glutathione S-transferase protein to mycoparasitic cell-free extracts produced the same effect. These findings suggest that ech-42 expression in T. harzianum is regulated by (i) binding of Cre1 to two single sites in the ech-42 promoter, (ii) binding of a “mycoparasitic” protein–protein complex to the ech-42 promoter in vicinity of the Cre1 binding sites, and (iii) functional inactivation of Cre1 upon mycoparasitic interaction to enable the formation of the mycoparasitic protein–DNA complex.
Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.
Resumo:
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Background: Cnidarian - dinoflagellate intracellular symbioses are one of the most important mutualisms in the marine environment. They form the trophic and structural foundation of coral reef ecosystems, and have played a key role in the evolutionary radiation and biodiversity of cnidarian species. Despite the prevalence of these symbioses, we still know very little about the molecular modulators that initiate, regulate, and maintain the interaction between these two different biological entities. In this study, we conducted a comparative host anemone transcriptome analysis using a cDNA microarray platform to identify genes involved in cnidarian - algal symbiosis. Results: We detected statistically significant differences in host gene expression profiles between sea anemones ( Anthopleura elegantissima) in a symbiotic and non-symbiotic state. The group of genes, whose expression is altered, is diverse, suggesting that the molecular regulation of the symbiosis is governed by changes in multiple cellular processes. In the context of cnidarian dinoflagellate symbioses, we discuss pivotal host gene expression changes involved in lipid metabolism, cell adhesion, cell proliferation, apoptosis, and oxidative stress. Conclusion: Our data do not support the existence of symbiosis- specific genes involved in controlling and regulating the symbiosis. Instead, it appears that the symbiosis is maintained by altering expression of existing genes involved in vital cellular processes. Specifically, the finding of key genes involved in cell cycle progression and apoptosis have led us to hypothesize that a suppression of apoptosis, together with a deregulation of the host cell cycle, create a platform that might be necessary for symbiont and/or symbiont-containing host cell survival. This first comprehensive molecular examination of the cnidarian - dinoflagellate associations provides critical insights into the maintenance and regulation of the symbiosis.
Resumo:
Consistent clinical and experimental evidence points to the involvement of two enzymatic systems (the matrix metalloproteinases-MMPs and the protein crosslinking enzymes transglutaminases) in prominent physiologic roles of endothelium in the maintenance of vascular wall integrity, regulation of blood flow and clotting, and exchange of molecules and cells between the extra- and the intravascular space. These issues are briefly discussed in relation to differentiation of the endothelium within the vascular system, mechanisms of molecular regulation and the effects of their disruption in pathology. While the roles of MMPs are now understood in detail and represent a promising target for pharmacological interventions, much less is known on the roles of transglutaminases in vascular biology. These last enzymes are expressed at extremely high levels in endothelial cells and are involved in cell matrix interactions important to angiogenesis and apoptosis/cell death of endothelial cells, in the control of blood clotting and and in the transfer of molecules and cells across the vascular walls. On the clinical side, these properties are relevant in vascular inflammatory processes, atherosclerosis and tumor metastasis. We summarise the large body of evidence available in this perspective and discuss its implications for the development of new therapeutic strategies.
Resumo:
Abstract: The serrated pathway to colorectal tumor formation involves oncogenic mutations in the BRAF gene, which are sufficient for initiation of hyperplastic growth but not for tumor progression. A previous analysis of colorectal tumors revealed that overexpression of splice variant Rac1b occurs in around 80% of tumors with mutant BRAF and both events proved to cooperate in tumor cell survival. Patients with inflamed human colonic mucosa also have increased expression of Rac1b as well as mice with experimentally induced colitis. The increase of Rac1b in the mouse model was specifically prevented by the nonsteroidal anti-inflammatory drug ibuprofen. Purpose: The objective of our study is to understand the molecular regulation of Rac1b alternative splicing event and how it contributes to tumorigenesis. Experimental description: HT29 colorectal cell line was used as model to test several signaling pathways after 48h of treatment with ibuprofen. For this we analyzed the proteins of interest by Western Blot and the transcript levels by RT-PCR. Results: Mechanistic studies in cultured HT29 colorectal tumor cells revealed that ibuprofen inhibited Rac1b expression in a cyclooxygenase inhibition–independent manner and targets directly the alternative splicing event. Here, we provide evidence that ibuprofen leads to a decrease in expression of SRSF1, a splicing factor that we previously identified to promote Rac1b alternative splicing. Together, our results suggest that stromal cues, namely, inflammation, can trigger changes in Rac1b expression in the colon and identify ibuprofen as a highly specific and efficient inhibitor of Rac1b overexpression in colorectal tumors. Conclusions: Our data identify an additional cyclooxygenase–independent action of ibuprofen and suggest it may be beneficial in the treatment of patients with the subtype of BRAF-mutated serrated colorectal tumors.
Resumo:
Microbial xylanolytic enzymes have a promising biotechnological potential, and are extensively applied in industries. In this study, induction of xylanolytic activity was examined in Aspergillus phoenicis. Xylanase activity induced by xylan, xylose or beta-methylxyloside was predominantly extracellular (93-97%). Addition of 1% glucose to media supplemented with xylan or xylose repressed xylanase production. Glucose repression was alleviated by addition of cAMP or dibutyryl-cAMP. These physiological observations were supported by a Northern analysis using part of the xylanase gene ApXLN as a probe. Gene transcription was shown to be induced by xylan, xylose, and beta-methylxyloside, and was repressed by the addition of 1% glucose. Glucose repression was partially relieved by addition of cAMP or dibutyryl cAMP.
Resumo:
The fire ant Solenopsis invicta and its close relatives display an important social polymorphism involving differences in colony queen number. Colonies are headed by either a single reproductive queen (monogyne form) or multiple queens (polygyne form). This variation in social organization is associated with variation at the gene Gp-9, with monogyne colonies harboring only B-like allelic variants and polygyne colonies always containing b-like variants as well. We describe naturally occurring variation at Gp-9 in fire ants based on 185 full-length sequences, 136 of which were obtained from S. invicta collected over much of its native range. While there is little overall differentiation between most of the numerous alleles observed, a surprising amount is found in the coding regions of the gene, with such substitutions usually causing amino acid replacements. This elevated coding-region variation may result from a lack of negative selection acting to constrain amino acid replacements over much of the protein, different mutation rates or biases in coding and non-coding sequences, negative selection acting with greater strength on non-coding than coding regions, and/or positive selection acting on the protein. Formal selection analyses provide evidence that the latter force played an important role in the basal b-like lineages coincident with the emergence of polygyny. While our data set reveals considerable paraphyly and polyphyly of S. invicta sequences with respect to those of other fire ant species, the b-like alleles of the socially polymorphic species are monophyletic. An expanded analysis of colonies containing alleles of this clade confirmed the invariant link between their presence and expression of polygyny. Finally, our discovery of several unique alleles bearing various combinations of b-like and B-like codons allows us to conclude that no single b-like residue is completely predictive of polygyne behavior and, thus, potentially causally involved in its expression. Rather, all three typical b-like residues appear to be necessary.
Resumo:
L'ubiquitination est une modification des protéines conservée, consistant en l'addition de résidus « ubiquitine » et régulant le destin cellulaire des protéines. La protéine « TRAF-interacting protein » TRAIP (ou TRIP) est une ligase E3 qui catalyse l'étape finale de l'ubiquitination. TRAIP est conservé dans l'évolution et est nécessaire au développement des organismes puisque l'ablation de TRAIP conduit à la mort embryonnaire aussi bien de la drosophile que de la souris. De plus, la réduction de l'expression de TRAIP dans des kératinocytes épidermiques humains réprime la prolifération cellulaire et induit un arrêt du cycle cellulaire en phase Gl, soulignant le lien étroit entre TRAIP et la prolifération cellulaire. Comme les mécanismes de régulation de la prolifération jouent un rôle majeur dans l'homéostasie de la peau, il est important de caractériser la fonction de TRAIP dans ces mécanismes. En utilisant des approches in vitro, nous avons déterminé que la protéine TRAIP est instable, modifiée par l'addition d'ubiquitine et ayant une demi-vie d'environ 4 heures. Nos analyses ont également révélé que l'expression de TRAIP est dépendante du cycle cellulaire, atteignant un pic d'expression en phase G2/M et que l'induction de son expression s'effectue principalement au cours de la transition Gl/S. Nous avons identifié le facteur de transcription E2F1 comme en étant le responsable, en régulant directement le promoteur de TRAIP. Aussi, TRAIP endogène ou surexprimée est surtout localisée au niveau du nucléole, une organelle nucléaire qui est désassemblée pendant la division cellulaire. Pour examiner la localisation subcellulaire de TRAIP pendant la mitose, nous avons imagé la protéine TRAIP fusionnée à une protéine fluorescente, à l'intérieur de cellules vivantes nommées HeLa, à l'aide d'un microscope confocal. Dans ces conditions, TRAIP est majoritairement localisée autour des chromosomes en début de mitose, puis est arrangée au niveau de l'ADN chromosomique en fin de mitose. La détection de TRAIP endogène à l'aide d'un anticorps spécifique a confirmé cette localisation. Enfin, l'inactivation de TRAIP dans les cellules HeLa par interférence ARN a inhibé leur capacité à s'arrêter en milieu de mitose. Nos résultats suggèrent que le mécanisme sous-jacent peut être lié au point de contrôle de l'assemblage du fuseau mitotique. - Ubiquitination of proteins is a post-translational modification which decides the cellular fate of the protein. The TRAF-interacting protein (TRAIP, TRIP) functions as an E3 ubiquitin ligase mediating addition of ubiquitin moieties to proteins. TRAIP interacts with the deubiquitinase CYLD, a tumor suppressor whose functional inactivation leads to skin appendage tumors. TRAIP is required for early embryonic development since removal of TRAIP either in Drosophila or mice by mutations or knock¬out is lethal due to aberrant regulation of cell proliferation and apoptosis. Furthermore, shRNA- mediated knock-down of TRAIP in human epidermal keratinocytes (HEK) repressed cell proliferation and induced a Gl/S phase block in the cell cycle. Additionally, TRAIP expression is strongly down- regulated during keratinocyte differentiation supporting the notion of a tight link between TRAIP and cell proliferation. We thus examined the biological functions of TRAIP in epithelial cell proliferation. Using an in vitro approach, we could determine that the TRAIP protein is unstable, modified by addition of ubiquitin moieties after translation and exhibits a half-life of 3.7+/-1-6 hours. Our analysis revealed that the TRAIP expression is modulated in a cell-cycle dependent manner, reaching a maximum expression level in G2/M phases. In addition, the expression of TRAIP was particularly activated during Gl/S phase transition and we could identify the transcription factor E2F1 as an activator of the TRAIP gene promoter. Both endogenous and over-expressed TRAIP mainly localized to the nucleolus, a nuclear organelle which is disassembled during cell division. To examine the subcellular localization of TRAIP during M phase, we performed confocal live-cell imaging of a functional fluorescent protein TRAIP-GFP in HeLa cells. TRAIP was distributed in the cytoplasm and accumulated around mitotic chromosomes in pro- and meta-phasic cells. TRAIP was then confined to chromosomal DNA location in anaphase and later phases of mitosis. Immune-detection of endogenous TRAIP protein confirmed its particular localization in mitosis. Finally, inactivating TRAIP expression in HeLa cells using RNA interference abrogated the cells ability to stop or delay mitosis progression. Our results suggested that TRAIP may involve the spindle assembly checkpoint.
Resumo:
Résumé Régulation de l'expression de la Connexin36 dans les cellules sécrétrices d'insuline La communication intercellulaire est en partie assurée via des jonctions communicantes de type "gap". Dans la cellule ß pancréatique, plusieurs observations indiquent que le couplage assuré par des jonctions gap formées parla Connexine36 (Cx36) est impliqué dans le contrôle de la sécrétion de l'insuline. De plus, nous avons récemment démontré qu'un niveau précis d'expression de la Cx36 est nécessaire pour maintenir une bonne coordination de l'ensemble des cellules ß, et permettre ainsi une sécrétion synchrone et contrôlée d'insuline. Le développement du diabète et du syndrome métabolique est partiellement dû à une altération de la capacité des cellules ß à sécréter de l'insuline en réponse à une augmentation de la glycémie. Cette altération est en partie causée par l'augmentation prolongée des taux circulant de glucose, mais aussi de lipides, sous la forme d'acides gras libres, et de LDL (Low Density Lipoproteins), particules assurant le transport des acides gras et du cholestérol dans le sang. Nous avons étudié la régulation de l'expression de la Cx36 dans différentes conditions reflétant la physiopathologie du diabète de type 2 et du syndrome métabolique et démontré qu'une exposition prolongée à des concentrations élevées de glucose, de LDL, ainsi que de palmitate (acide gras saturé le plus abondant dans l'organisme), inhibent l'expression de la Cx36 dans les cellules ß. Cette inhibition implique l'activation de la PKA (Proteine Kinase A), qui stimule à son tour l'expression du facteur de transcription ICER-1 (Inductible cAMP Early Repressor-1). Ce puissant répresseur se fixe spécifiquement sur un motif CRE (cAMP Response Element), situé dans le promoteur du gène de la Cx36, inhibant ainsi son expression. Nous avons de plus démontré que des cytokines pro-inflammatoires, qui pourraient contribuer au développement du diabète, inhibent également l'expression de la Cx36. Cependant, les cytokines agissent indépendamment du répresseur ICER-1, mais selon un mécanisme requérant l'activation de l'AMPK (AMP dependant protein kinase). Sachant qu'un contrôle précis des niveaux d'expression de la Cx36 est un élément déterminant pour une sécrétion optimale de l'insuline, nos résultats suggèrent que la Cx36 pourrait être impliquée dans l'altération de la sécrétion de l'insuline contribuant à l'apparition du diabète de type 2. Summary A particular way by which cells communicate with each other is mediated by gap junctions, transmembrane structures providing a direct pathway for the diffusion of small molecules between adjacent cells. Gap junctional communication is required to maintain a proper functioning of insulin-secreting ß-cells. Moreover, the expression levels of connexin36 (Cx36), the sole gap junction protein expressed in ß-cells, are critical in maintaining glucose-stimulated insulin secretion. Chronic hyperglycemia and hyperlipidemia exert deleterious effects on insulin secretion and may contribute to the progressive ß-cell failure linked to the development of type 2 diabetes and metabolic syndrome. Since modulations of the Cx36 levels might impair ß-cell function, the general aim of this work was to elucidate wether elevated levels of glucose and lipids affect Cx36 expression. The first part of this work was dedicated to the study of the effect of high glucose concentrations on Cx36 expression. We demonstrated that glucose transcriptionally down-regulates the expression of Cx36 in insulin-secreting cells through activation of the protein kinase A (PKA), which in turn stimulates the expression of the inducible cAMP early repressor-1 (ICER-1). This repressor binds to a highly conserved cAMP response element (CRE) located in the Cx36 promoter, thereby inhibiting Cx36 expression. The second part of this thesis consisted in studying the effects of sustained exposure to free fatty acids (FFA) and human lipoproteins on Cx36 levels. The experiments revealed that the most abundant FFA, palmitate, as well as the atherogenic low density lipoproteins (LDL), also stimulate ICER-1 expression, resulting in Cx36 down-regulation. Finally, the third part of the work focused on the consequences of long-term exposure to proinflammatory cytokines on Cx36 content. Interleukin-1 ß (IL-1 ß) inhibits Cx36 expression and its effect is potentialized by tumor necrosis factor α (TNFα) and interferon γ (IFNγ). We further unveiled that the cytokines effect on Cx36 levels requires activation of the AMP dependent protein kinase (AMPK). Prolonged exposures to glucose, palmitate, LDL, and pro-inflammatory cytokines have all been proposed to contribute to the development of diabetes and metabolic syndrome. Since Cx36 expression levels are critical to maintain ß-cell function, Cx36 down-regulation by glucose, lipids, and cytokines might participate to the ß-cell failure associated with diabetes development.
Resumo:
The adrenergic receptors (ARs) belong to the superfamily of membrane-bound G protein coupled receptors (GPCRs). Our investigation has focused on the structure-function relationship of the alpha 1b-AR subtype used as the model system for other GPCRs. Site-directed mutagenesis studies have elucidated the structural domains of the alpha 1b-AR involved in ligand binding, G protein coupling or desensitization. In addition, a combined approach using site-directed mutagenesis and molecular dynamics analysis of the alpha 1b-AR has provided information about the potential mechanisms underlying the activation process of the receptor, i.e. its transition from the 'inactive' to the 'active' conformation.
Resumo:
In response to DNA damage, p53-induced protein with a death domain (PIDD) forms a complex called the PIDDosome, which either consists of PIDD, RIP-associated protein with a death domain and caspase-2, forming a platform for the activation of caspase-2, or contains PIDD, RIP1 and NEMO, important for NF-κB activation. PIDDosome activation is dependent on auto-processing of PIDD at two different sites, generating the fragments PIDD-C and PIDD-CC. Despite constitutive cleavage, endogenous PIDD remains inactive. In this study, we screened for novel PIDD regulators and identified heat shock protein 90 (Hsp90) as a major effector in both PIDD protein maturation and activation. Hsp90, together with p23, binds PIDD and inhibition of Hsp90 activity with geldanamycin efficiently disrupts this association and impairs PIDD auto-processing. Consequently, both PIDD-mediated NF-κB and caspase-2 activation are abrogated. Interestingly, PIDDosome formation itself is associated with Hsp90 release. Characterisation of cytoplasmic and nuclear pools of PIDD showed that active PIDD accumulates in the nucleus and that only cytoplasmic PIDD is bound to Hsp90. Finally, heat shock induces Hsp90 release from PIDD and PIDD nuclear translocation. Thus, Hsp90 has a major role in controlling PIDD functional activity.
Resumo:
STUDY OBJECTIVES: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. DESIGN: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. SETTING: Mouse sleep laboratory. PARTICIPANTS: Male mice. INTERVENTIONS: Sleep deprivation. RESULTS: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. CONCLUSIONS: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. CITATION: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.
Resumo:
RÉSUMÉ Les protéines d'ancrage de la protéine kinase A (AKAPs) constituent une grande famille de protéines qui ciblent la protéine kinase A (PKA) à proximité de ses substrats physiologiques pour assurer leur régulation. Une nouvelle protéine de cette famille, appelée AKAP-Lbc, a été récemment caractérisée et fonctionne comme un facteur d'échange de nucléotides guanine (GEF) pour la petite GTPase Rho. AKAP-Lbc est régulée par différents signaux qui activent et désactivent son activité Rho-GEF. Son activation est assurée par la sous-unité alpha de la protéine G hétérotrimérique G12, tandis que son inhibition dépend de son interaction avec la PKA et 14-3-3. AKAP-Lbc est principalement exprimée dans le coeur et pourrait réguler des processus importants tels que l'hypertrophie et la différenciation des cardiomyocytes. Ainsi, il est crucial d'élucider les mécanismes moléculaires impliqués dans la régulation de son activité Rho-GEF. Le but général de ce travail de thèse est la caractérisation de deux nouveaux mécanismes impliqués dans la régulation de l'activité de AKAP-Lbc. Le premier mécanisme consiste en la régulation de l'activité de AKAP-Lbc par son homo-oligomérisation. Mes travaux montrent que l'homo-oligomérisation maintient AKAP-Lbc inactive, dans une conformation permettant à la PKA ancrée et à 14-3-3 d'exercer leur effet inhibiteur sur l'activité de AKAP-Lbc. Le second mécanisme concerne la régulation de l'activité de AKAP-Lbc via une nouvelle interaction entre AKAP-Lbc et la protéine LC3. LC3 joue un rôle crucial dans l'autophagie, un processus cellulaire qui adresse les protéines cytoplasmiques au lysosome pour leur dégradation. Ce mécanisme est particulièrement important pour le survie des cardiomyocytes durant les périodes d'absence de nutriments. Mes travaux mettent en évidence que LC3 inhibe l'activité Rho-GEF de AKAP-Lbc, ce qui suggère que, au-delà son rôle bien établi dans l'autophagie, LC3 participerait à la régulation de la signalisation de Rho. Prises ensembles, ces études contribuent à comprendre comment le complexe de signalisation formé par AKAP-Lbc régule la signalisation de Rho dans les cellules. Au-delà de leur intérêt au niveau biochimique, ces travaux pourraient aussi contribuer à élucider les réseaux de signalisation qui régulent des phénomènes physiologiques dans le coeur. ABSTRACT A-kinase anchoring proteins (AKAPs) are a group of functionally related proteins, which target the cAMP dependent protein kinase A (PKA) in close proximity to its physiological substrates for ensuring their regulation. A novel PKA anchoring protein, termed AKAP-Lbc, has been recently characterized, which also functions as a guanine nucleotide exchange factor (GEF) for the small GTPase Rho. AKAP-Lbc is regulated in a bi-directional manner by signals which activate or deactivate its Rho-GEF activity. Activation is mediated by the alpha subunit of the heterotrimeric G protein G12, whereas inhibition occurs following its interaction with PKA and 14-3-3. AKAP-Lbc is predominantly expressed in the heart and might regulate important processes such as hypertrophy and differentiation of cardiomyocytes. Therefore ít is crucial to elucidate the molecular mechanisms involved in the regulation of the Rho-GEF activity of AKAP-Lbc. The general aim of the present thesis work is the characterization of two novel molecular mechanisms involved in the regulation of the Rho-GEF activity of AKAP-Lbc. The first mechanism consists of the. regulation of AKAP-Lbc activity through its homooligomerization. I report here that homo-oligomerization maintains AKAP-Lbc inactive, under a conformation suitable for ensuring the inhibitory effect of anchored PKA and 14-33 on AKAP-Lbc activity. The second mechanism concerns the regulation of AKAP-Lbc activity through a novel interaction between AKAP-Lbc and ubiquitin-like protein LC3. LC3 is a key mediator of autophagy, which is a cellular process that targets cytosolic proteins to the lysosome for degradation. This process is particularly important for cardiomyocyte survival during conditions of nutrient starvation. Here, I show that LC3 is a negative regulator of the Rho-GEF activity of AKAP-Lbc, which suggests that, beyond its well established role in autophagy, LC3 can participate in the regulation of Rho signaling in cells. Overall, these findings contribute to understand how the AKAP-Lbc signaling complex can regulate the Rho signaling in cells. Beyond its interest at the biochemical level, this work might also contribute to elucidate the signaling network that regulate physiological events in the heart.