999 resultados para molecular imprinting


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes a novel use for the polymeric film, poly(o-aminophenol) (PAP) that was made responsive to a specific protein. This was achieved through templated electropolymerization of aminophenol (AP) in the presence of protein. The procedure involved adsorbing protein on the electrode surface and thereafter electroploymerizing the aminophenol. Proteins embedded at the outer surface of the polymeric film were digested by proteinase K and then washed away thereby creating vacant sites. The capacity of the template film to specifically rebind protein was tested with myoglobin (Myo), a cardiac biomarker for ischemia. The films acted as biomimetic artificial antibodies and were produced on a gold (Au) screen printed electrode (SPE), as a step towards disposable sensors to enable point-of-care applications. Raman spectroscopy was used to follow the surface modification of the Au-SPE. The ability of the material to rebind Myo was measured by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The devices displayed linear responses to Myo in EIS and SWV assays down to 4.0 and 3.5 μg/mL, respectively, with detection limits of 1.5 and 0.8 μg/mL. Good selectivity was observed in the presence of troponin T (TnT) and creatine kinase (CKMB) in SWV assays, and accurate results were obtained in applications to spiked serum. The sensor described in this work is a potential tool for screening Myo in point-of-care due to the simplicity of fabrication, disposability, short time response, low cost, good sensitivity and selectivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A gold screen printed electrode (Au-SPE) was modified by merging Molecular Imprinting and Self-Assembly Monolayer techniques for fast screening cardiac biomarkers in point-of-care (POC). For this purpose, Myoglobin (Myo) was selected as target analyte and its plastic antibody imprinted over a glutaraldehyde (Glu)/cysteamine (Cys) layer on the gold-surface. The imprinting effect was produced by growing a reticulated polymer of acrylamide (AAM) and N,N′-methylenebisacrylamide (NNMBA) around the Myo template, covalently attached to the biosensing surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies were carried out in all chemical modification steps to confirm the surface changes in the Au-SPE. The analytical features of the resulting biosensor were studied by different electrochemical techniques, including EIS, square wave voltammetry (SWV) and potentiometry. The limits of detection ranged from 0.13 to 8 μg/mL. Only potentiometry assays showed limits of detection including the cut-off Myo levels. Quantitative information was also produced for Myo concentrations ≥0.2 μg/mL. The linear response of the biosensing device showed an anionic slope of ~70 mV per decade molar concentration up to 0.3 μg/mL. The interference of coexisting species was tested and good selectivity was observed. The biosensor was successfully applied to biological fluids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol–gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about −58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes −54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A furazolidona é uma substância ativa do medicamento Giarlam que contém um espetro anti-bacteriano relativamente amplo e que é frequentemente usado para tratar certas doenças bacterianas e protozoárias no homem. A maioria dos fármacos exige uma dosagem que garanta os níveis de segurança e eficácia de atuação. A necessidade de dosear os medicamentos e os seus metabólitos exige o desenvolvimento constante de métodos analíticos eficientes. Neste trabalho desenvolveu-se um novo sensor eletroquímico para a deteção da furazolidona, baseado num elétrodo de pasta de carbono modificado com um polímero molecularmente impresso. A procura de novos materiais que permitam uma melhor seletividade e sensibilidade aos sistemas de deteção é especialmente importante no desenvolvimento de métodos analíticos. Os polímeros molecularmente impressos enquadram-se nesse perfil e o seu uso tem vindo a ser cada vez mais frequente como ferramenta importante em química analítica. Assim, sintetizou-se um polímero com cavidades seletivas para a Furazolidona. Este polímero foi, misturado com grafite e perafina de modo a produzir uma pasta de carbono. Uma seringa de plástico foi usada como suporte da pasta de carbono. O comportamento eletroquímico do sensor foi avaliado e diversas condições de utilização foram estudadas e otimizadas. O sensor apresenta um comportamento linear entre a intensidade do pico e a concentração numa gama de concentrações entre 1 e 100 μM, um limite de deteção de 1 μM e uma precisão (repetibilidade) inferior a 7%. A aplicabilidade do sensor fabricado em amostras complexas foi avaliada pela deteção do fármaco em amostras de urina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A presente dissertação tem com objetivo o desenvolvimento de um biossensor com base nos polímeros de impressão molecular para a deteção de uma molécula alvo, o ácido glutâmico que é convertido em glutamina pela glutamina sintetase, recorrendo à potenciometria. Nas células neoplásicas a glutamina não é sintetizada podendo-se considerar que o ácido glutâmico é um potencial agente anti-cancro. A técnica de impressão molécular utilizada foi a polimerização em bulk, combinando a acrilamida e a bis acrilamida com o ácido glutâmico. Para se verificar se a resposta potenciométrica obtida era de facto da molécula alvo foram preparados em paralelo com os sensores, materiais de controlo, ou seja, moléculas sem impressão molécular (NIP). Para se controlar a constituíção química dos vários sensores nomeadamente, do NIP e do polímero de impressão molecular (MIP) antes e após a remoção bem como a molécula foram realizados estudos de Espetroscopia de Infravermelhos de Transformada de Fourier (FTIR), Scanning electron microscope (SEM) e Espetroscopia de Raios X por dispersão em energia (EDS). Os materiais desenvolvidos foram aplicados em várias membranas que diferiam umas das outras, sendo seletivas ao ião. A avaliação das características gerais das membranas baseou-se na análise das curvas de calibração, conseguidas em meios com pHs diferentes, comparando os vários elétrodos. O pH 5 foi o que apresentou melhor resultado, associado a uma membrana que continha um aditivo, o p-tetra-octilphenol, e com o sensor com percentagem de 3%. Posto isto, testou-se em material biológico, urina, com as melhores características quer em termos de sensibilidade (18,32mV/década) quer em termos de linearidade (1,6x10-6 a 1,48x10-3 mol/L). Verificou-se ainda que aplicando iões interferentes na solução, estes não interferem nesta, podendo ser aplicados na amostra sem que haja alteração na resposta potenciométrica. O elétrodo é capaz de distinguir o ácido glutâmico dos restantes iões presentes na solução.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O trabalho consistiu no desenvolvimento e caracterização de sensores potenciométricos com base em polímeros de impressão molecular para a determinação de um antibiótico, a norfloxacina, em aquacultura. A simplicidade, o baixo custo e a interação rápida e reversível dos sensores potenciométricos com os analitos fizeram com que este fosse o tipo de sensor escolhido. O material sensor foi obtido por tecnologia de impressão molecular, baseada em polimerização em bulk, em que a NOR foi a molécula molde e foram utilizados como monómeros para autoconstrução dos sensores o pirrol, isoladamente, ou em conjunto com partículas de sílica gel funcionalizadas com 3-aminopropil. Também foi obtido material sensor, para controlo, em que a molécula molde NOR não estava presente (NIP). As características dos materiais sensores foram sujeitas a análise de microscopia eletrónica SEM e análise por espectrómetro de infravermelhos com transformada de Fourier. Os materiais sensores foram incluídos em membranas poliméricas, que seriam incorporadas em elétrodos. A avaliação do desempenho dos elétrodos foi feita através de curvas de calibração em diferentes meios (PBS, MES e HEPES). Também foi efetuada com sucesso a análise da sensibilidade dos elétrodos em água dopada. As diversas avaliações e análises efetuadas levaram a concluir que o MIP de pirrol com aditivo aniónico, foi o material sensor testado que permitiu obter melhores propriedades de resposta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we describe the preparation of iron(II) porphyrinosilica in a simple one-pot reaction, where the -SO2Cl groups present in the phenyl rings of FeTDCSPP+ react with 3-aminopropyltriethoxysilane and tetraethoxysilane in the presence of a nitrogenous base, leading to iron(III) porphyrinosilica. In this same procedure, molecular cavities containing regularly spaced functional groups are created through the molecular imprinting technique, in which the nitrogenous base coordinated to the iron(III) porphyrin serves as a template. The removal of such template in a Soxhlet extractor leads to a cavity with the same shape and size as the nitrogenous base, enabling the construction of shape-selective catalysts mimicking cytochrome P-450. Five different imprinting molecules have been used: imidazole, 1-methylimidazole, 2-methylbenzimidazole, 4-phenylimidazole and miconazole and ultra-violet/visible absorption spectroscopy, thermogravimetric analysis and electron paramagnetic resonance carried out. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dopamine (DA) can be detected by electrochemical oxidation in conventional electrodes. However, the presence of other oxidizable species (interferents) usually present in physiological fluids at high concentrations (like ascorbic acid) makes very difficult its electrochemical detection. In the present work, glassy carbon electrodes have been modified with molecularly imprinted silica (MIS) films prepared by electroassisted deposition of sol–gel precursors. The production of MIS films was performed by adding the template molecule (DA) to the precursor sol. The molecular impression of silica was assessed showing a high coherency allowing a filtering capacity in the molecular scale. The MIS-modified electrodes present a high selectivity for the detection of DA in neutral or acidic solutions. The MIS-modified electrodes allow the amperometric determination of dopamine in solutions containing ascorbic acid with molar ratios lower than 1:50,000.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The grafting of functional brushes on the surface of molecularly imprinted polymer (MIP). particles hás been explored in the last few years to synthesize materiais combining high molecular recognition capabilities and stimulation triggered by changes in the surrounding environment [1, 2]. In the present work, MIP particles for 5-fluorouracil (a drug used in câncer treatment) were produced by precipitation polymerization in acetonitrile, using either MAA or HEMA as imprinting fünctional monomers, and m the presence of different kinds of RAFT agents. In a second step, taking advantage of the RAFT groups present in the surface of the particles, different kinds of fiinctional polymer brushes were grafted on the MIPs considering a "grafting from" process in the presence of a RAFT agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel surface molecularly-imprinted (MI) material to detect myoglobin (Myo) using gold screen printed electrodes (SPE) was developed. The sensitive detection was carry out by introducing a carboxylic polyvinyl chloride (PVC-COOH) layer on gold SPE surface. Myo was attached to the surface of gold SPE/PVC-COOH and the vacant spaces around it were filled by polymerizing acrylamide and N,N-methylenebisacrylamide (cross-linker). This polymerization was initiated by ammonium persulphate. After removing the template, the obtained material was able to rebind Myo and discriminate it among other interfering species. Various characterization techniques including electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) confirmed the surface modification. This sensor seemed a promising tool for screening Myo in point-of-care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel artificial antibody for troponin T (TnT) was synthesized by molecular imprint (MI) on the surface of multiwalled carbon nanotubes (MWCNT). This was done by attaching TnT to the MWCNT surface, and filling the vacant spaces by polymerizing under mild conditions acrylamide (monomer) in N,N′-methylenebisacrylamide (cross-linker) and ammonium persulphate (initiator). After removing the template, the obtained biomaterial was able to rebind TnT and discriminate it among other interfering species. Stereochemical recognition of TnT was confirmed by the non-rebinding ability displayed by non-imprinted (NI) materials, obtained by imprinting without a template. SEM and FTIR analysis confirmed the surface modification of the MWCNT. The ability of this biomaterial to rebind TnT was confirmed by including it as electroactive compound in a PVC/plasticizer mixture coating a wire of silver, gold or titanium. Anionic slopes of 50 mV decade−1 were obtained for the gold wire coated with MI-based membranes dipped in HEPES buffer of pH 7. The limit of detection was 0.16 μg mL−1. Neither the NI-MWCNT nor the MWCNT showed the ability to recognize the template. Good selectivity was observed against creatinine, sucrose, fructose, myoglobin, sodium glutamate, thiamine and urea. The sensor was tested successfully on serum samples. It is expected that this work opens new horizons on the design of new artificial antibodies for complex protein structures.