937 resultados para modified local ternary pattern
Resumo:
Antimicrobial resistance among respiratory tract pathogens has become an increasing problem worldwide during the last 10-20 years. The wide use of antimicrobial agents in ambulatory practice has contributed to the emergence and spread of antibiotic-resistant bacteria in the community, namely Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. The pneumococcus has developed resistance to most antibiotics used for its treatment. Classes with important resistance problems include the beta-lactams, the macrolides, the lincosamides, trimethoprim-sulfamethoxazole, and the tetracyclines. Unfortunately, resistance to more than one class of antibiotics is common. In Haemophilus influenzae and Moraxella catarrhalis, resistance to beta-lactam antibiotics is the main concern currently. It is important to know the local resistance pattern of the most common respiratory tract pathogens in order to make reasonable recommendations for an empirical therapy for respiratory tract infection, when antibiotic therapy is indeed indicated.
Resumo:
Meroplankton was sampled at 11 stations in the southern Kara Sea and the Yenisei Estuary in September 2000. Larvae of 29 benthic taxa representing 10 higher groups were identified. Meroplankton was present at almost all stations and most depth levels. The two most abundant groups were Echinodermata (68%) and Polychaeta (26%). Echinoderms dominated total meroplankton locally due to mass occurrences of Ophiopluteus larvae. The relative group composition was highly variable and seemed to depend mainly on the local hydrographic pattern. Comparison of meroplanktonic data with the distribution of the adults revealed for Spionida and Bivalvia a 'downstream' transport of the larvae whereas for other polychaete species and Ophiuroida 'upstream' transport into the estuary occurred. The distribution and concentration of the larvae within the estuary is explained by physical barriers established by hydrographic gradients, the prevailing mixing processes and the presence of a near-bottom counter current.
Resumo:
New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.
Resumo:
The aim of study was to examine the effects of the world's most challenging mountain ultramarathon (Tor des Geants [TdG]) on running mechanics. Mechanical measurements were undertaken in male runners (n = 16) and a control group (n = 8) before (PRE), during (MID), and after (POST) the TdG. Contact (tc) and aerial (ta) times, step frequency (f), and running velocity (v) were sampled. Spring-mass parameters of peak vertical ground-reaction force (Fmax), vertical downward displacement of the center of mass (Deltaz), leg-length change (DeltaL), and vertical (kvert) and leg (kleg) stiffness were computed. Significant decreases were observed in runners between PRE and MID for ta (P < .001), Fmax (P < .001), Deltaz (P < .05), and kleg (P < .01). In contrast, f significantly increased (P < .05) between PRE and MID-TdG. No further changes were observed at POST for any of those variables, with the exception of kleg, which went back to PRE. During the TdG, experienced runners modified their running pattern and spring-mass behavior mainly during the first half. The current results suggest that these mechanical changes aim at minimizing the pain occurring in lower limbs mainly during the eccentric phases. One cannot rule out that this switch to a "safer" technique may also aim to anticipate further damages.
Resumo:
Smart Card Automated Fare Collection (AFC) data has been extensively exploited to understand passenger behavior, passenger segment, trip purpose and improve transit planning through spatial travel pattern analysis. The literature has been evolving from simple to more sophisticated methods such as from aggregated to individual travel pattern analysis, and from stop-to-stop to flexible stop aggregation. However, the issue of high computing complexity has limited these methods in practical applications. This paper proposes a new algorithm named Weighted Stop Density Based Scanning Algorithm with Noise (WS-DBSCAN) based on the classical Density Based Scanning Algorithm with Noise (DBSCAN) algorithm to detect and update the daily changes in travel pattern. WS-DBSCAN converts the classical quadratic computation complexity DBSCAN to a problem of sub-quadratic complexity. The numerical experiment using the real AFC data in South East Queensland, Australia shows that the algorithm costs only 0.45% in computation time compared to the classical DBSCAN, but provides the same clustering results.
Resumo:
Particle swarm optimization (PSO), a new population based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area.Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time.This study proposes a method based on the particle swarm optimization (PSO) technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star.To validate the effectiveness and usefulness of algorithms,a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global convergence.
Resumo:
Network Intrusion Detection Systems (NIDS) intercept the traffic at an organization's network periphery to thwart intrusion attempts. Signature-based NIDS compares the intercepted packets against its database of known vulnerabilities and malware signatures to detect such cyber attacks. These signatures are represented using Regular Expressions (REs) and strings. Regular Expressions, because of their higher expressive power, are preferred over simple strings to write these signatures. We present Cascaded Automata Architecture to perform memory efficient Regular Expression pattern matching using existing string matching solutions. The proposed architecture performs two stage Regular Expression pattern matching. We replace the substring and character class components of the Regular Expression with new symbols. We address the challenges involved in this approach. We augment the Word-based Automata, obtained from the re-written Regular Expressions, with counter-based states and length bound transitions to perform Regular Expression pattern matching. We evaluated our architecture on Regular Expressions taken from Snort rulesets. We were able to reduce the number of automata states between 50% to 85%. Additionally, we could reduce the number of transitions by a factor of 3 leading to further reduction in the memory requirements.
Resumo:
Data clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning and data mining. Clustering is grouping of a data set or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait according to some defined distance measure. In this paper we present the genetically improved version of particle swarm optimization algorithm which is a population based heuristic search technique derived from the analysis of the particle swarm intelligence and the concepts of genetic algorithms (GA). The algorithm combines the concepts of PSO such as velocity and position update rules together with the concepts of GA such as selection, crossover and mutation. The performance of the above proposed algorithm is evaluated using some benchmark datasets from Machine Learning Repository. The performance of our method is better than k-means and PSO algorithm.
Resumo:
Notch signaling acts in many diverse developmental spatial patterning processes. To better understand why this particular pathway is employed where it is and how downstream feedbacks interact with the signaling system to drive patterning, we have pursued three aims: (i) to quantitatively measure the Notch system's signal input/output (I/O) relationship in cell culture, (ii) to use the quantitative I/O relationship to computationally predict patterning outcomes of downstream feedbacks, and (iii) to reconstitute a Notch-mediated lateral induction feedback (in which Notch signaling upregulates the expression of Delta) in cell culture. The quantitative Notch I/O relationship revealed that in addition to the trans-activation between Notch and Delta on neighboring cells there is also a strong, mutual cis-inactivation between Notch and Delta on the same cell. This feature tends to amplify small differences between cells. Incorporating our improved understanding of the signaling system into simulations of different types of downstream feedbacks and boundary conditions lent us several insights into their function. The Notch system converts a shallow gradient of Delta expression into a sharp band of Notch signaling without any sort of feedback at all, in a system motivated by the Drosophila wing vein. It also improves the robustness of lateral inhibition patterning, where signal downregulates ligand expression, by removing the requirement for explicit cooperativity in the feedback and permitting an exceptionally simple mechanism for the pattern. When coupled to a downstream lateral induction feedback, the Notch system supports the propagation of a signaling front across a tissue to convert a large area from one state to another with only a local source of initial stimulation. It is also capable of converting a slowly-varying gradient in parameters into a sharp delineation between high- and low-ligand populations of cells, a pattern reminiscent of smooth muscle specification around artery walls. Finally, by implementing a version of the lateral induction feedback architecture modified with the addition of an autoregulatory positive feedback loop, we were able to generate cells that produce enough cis ligand when stimulated by trans ligand to themselves transmit signal to neighboring cells, which is the hallmark of lateral induction.
Resumo:
Modified nucleosides, formed post-transcriptionally in RNA by a number of modification enzymes, are excreted in abnormal levels in the urine of patients with malignant tumors. To test their usefulness as tumor markers, and to compare them with the conventional tumor markers, a reversed-phase high-performance liquid chromatographic (RP-HPLC) method and a factor analysis method have been used to study the excretion pattern of nucleosides of breast cancer patients. A clear cut differentiation of the breast cancer group and the healthy individuals in two clusters without overlapping was obtained. Copyright (C) 2000 John Wiley & Sons, Ltd.