979 resultados para mode domain transformation
Resumo:
This paper describes a computational model based on lumped elements for the mutual coupling between phases in three-phase transmission lines without the explicit use of modal transformation matrices. The self and mutual parameters and the coupling between phases are modeled using modal transformation techniques. The modal representation is developed from the intrinsic consideration of the modal transformation matrix and the resulting system of time-domain differential equations is described as state equations. Thus, a detailed profile of the currents and the voltages through the line can be easily calculated using numerical or analytical integration methods. However, the original contribution of the article is the proposal of a time-domain model without the successive phase/mode transformations and a practical implementation based on conventional electrical circuits, without the use of electromagnetic theory to model the coupling between phases. © 2011 IEEE.
Resumo:
The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi-phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which do not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show an analytical model for phase currents and voltages of the line and results it will be applied to a hypothetical two-phase. It will be shown results obtained with that will be compared to results obtained using a classical model. © 2012 IEEE.
Resumo:
The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which do not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show an analytical model for phase currents and voltages of the line and results it will be applied to a hypothetical two-phase. It will be shown results obtained with that will be compared to results obtained using a classical model © 2003-2012 IEEE.
Resumo:
The Epstein–Barr virus latent membrane protein 1 (LMP1) is essential for the transformation of B lymphocytes into lymphoblastoid cell lines. Previous data are consistent with a model that LMP1 is a constitutively activated receptor that transduces signals for transformation through its carboxyl-terminal cytoplasmic tail. One transformation effector site (TES1), located within the membrane proximal 45 residues of the cytoplasmic tail, constitutively engages tumor necrosis factor receptor-associated factors. Signals from TES1 are sufficient to drive initial proliferation of infected resting B lymphocytes, but most lymphoblastoid cells infected with a virus that does not express the 155 residues beyond TES1 fail to grow as long-term cell lines. We now find that mutating two tyrosines to an isoleucine at the carboxyl end of the cytoplasmic tail cripples the ability of EBV to cause lymphoblastoid cell outgrowth, thereby marking a second transformation effector site, TES2. A yeast two-hybrid screen identified TES2 interacting proteins, including the tumor necrosis factor receptor-associated death domain protein (TRADD). TRADD was the only protein that interacted with wild-type TES2 and not with isoleucine-mutated TES2. TRADD associated with wild-type LMP1 but not with isoleucine-mutated LMP1 in mammalian cells, and TRADD constitutively associated with LMP1 in EBV-transformed cells. In transfection assays, TRADD and TES2 synergistically mediated high-level NF-κB activation. These results indicate that LMP1 appropriates TRADD to enable efficient long-term lymphoblastoid cell outgrowth. High-level NF-κB activation also appears to be a critical component of long-term outgrowth.
Resumo:
The adenovirus type 2/5 E1A proteins transform primary baby rat kidney (BRK) cells in cooperation with the activated Ras (T24 ras) oncoprotein. The N-terminal half of E1A (exon 1) is essential for this transformation activity. While the C-terminal half of E1A (exon 2) is dispensable, a region located between residues 225 and 238 of the 243R E1A protein negatively modulates in vitro T24 ras cooperative transformation as well as the tumorigenic potential of E1A/T24 ras-transformed cells. The same C-terminal domain is also required for binding of a cellular 48-kDa phosphoprotein, C-terminal binding protein (CtBP). We have cloned the cDNA for CtBP via yeast two-hybrid interaction cloning. The cDNA encodes a 439-amino acid (48 kDa) protein that specifically interacts with exon 2 in yeast two-hybrid, in vitro protein binding, and in vivo coimmunoprecipitation analyses. This protein requires residues 225-238 of the 243R E1A protein for interaction. The predicted protein sequence of the isolated cDNA is identical to amino acid sequences obtained from peptides prepared from biochemically purified CtBP. Fine mapping of the CtBP-binding domain revealed that a 6-amino acid motif highly conserved among the E1A proteins of various human and animal adenoviruses is required for this interaction. These results suggest that interaction of CtBP with the E1A proteins may play a critical role in adenovirus replication and oncogenic transformation.
Resumo:
Final report, January 1979.
Resumo:
"July 18, 1958."
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"September 1984."
Resumo:
Energy Department, Office of Vehicle and Engine Research and Development, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Issued also as thesis (Ph. D.) University of California, 1916.
Resumo:
"August 1980."
Resumo:
"November 1989."
Resumo:
"December 1982."