729 resultados para mitotic gynogenesis
Resumo:
Le cycle cellulaire est hautement régulé par la phosphorylation réversible de plusieurs effecteurs. La kinase dépendante des cyclines Cdk1 déclenche la mitose en induisant le bris de l’enveloppe nucléaire, la condensation des chromosomes et la formation du fuseau mitotique. Chez les animaux métazoaires, ces évènements sont contrés par la protéine phosphatase PP2A-B55, qui déphosphoryle plusieurs substrats de Cdk1. La kinase Greatwall (Gwl) est activée par le complexe cycline B-Cdk1 en début de mitose et induit ensuite l’inhibition de PP2A-B55 via Endos/Arpp19. Toutefois, les mécanismes moléculaires qui régulent Gwl sont encore peu connus. Nous avons montré que Gwl a une activité s’opposant à PP2A-B55, qui collabore avec la kinase Polo pour assurer l’attachement du centrosome au noyau et la progression du cycle cellulaire dans le syncytium de l’embryon de la drosophile. Ensuite, nous avons trouvé dans des cellules de drosophile que Gwl est localisée au noyau pendant l’interphase, mais qu’elle se relocalise au cytoplasme dès la prophase, avant le bris de l’enveloppe nucléaire. Nous avons montré que cette translocation de Gwl est cruciale pour sa fonction et qu’elle dépend de la phosphorylation de plusieurs résidus de la région centrale de Gwl par les kinases Polo et Cdk1. Cette région centrale contient également deux séquences de localisation nucléaire (respectivement NLS1 et NLS2). De plus, nos résultats suggèrent que la phosphorylation de Gwl par la kinase Polo promeut sa liaison avec la protéine 14-3-3ε, ce qui favorise la rétention cytoplasmique de Gwl. Le rôle de Cdk1 dans cette translocation reste quant à lui inconnu. De plus, nous avons montré que le complexe cycline B-Cdk1 entre dans le noyau avant que Gwl ne soit transportée dans le cytoplasme. Cdk1 pourrait donc activer Gwl et phosphoryler ses substrats nucléaires, à l’abri de PP2A-B55 qui est largement cytoplasmique. Gwl est ensuite exclue du noyau et relocalisée dans le cytoplasme afin d’induire l’inhibition de PP2A-B55. Cela permet de synchroniser les événements de phosphorylation se produisant dans le noyau et dans le cytoplasme. Fait intéressant, un mécanisme de régulation de la localisation de Gwl similaire à cela a été découvert chez l’humain et chez la levure, suggérant que ce mécanisme est conservé entre différentes espèces.
Resumo:
Laser irradiation at wavelength 514 nm was used to study the effect, of lasers in inducing chromosomal aberrations at mitosis. This study offers a new radiation system which could be used for the induction of mutations. Results are compared with those obtained from studies using y-rays as irradiation source.
Resumo:
A comparat ive study of the effect oflaser in inducing chro mosomal aberrat ions at 4gg nm was done in View j aba L. (faba bean) and Allium ccpa L. (onion) with Argon ion laser (Spectra Physics Model 171). Seeds and bulbs of V.jaba and A. eepa were subjected to laser irra diation by 4gg nm excitations from Argon ion laser source at power levels 200 and 400 mW with power densities 2.25 mW em" and 4.49 mW em" and ditTerent exposure times (10, 20, 30 & 40 minutes). Similar to the effect of oth er physical and chemical mutagens, laser caused a dose dependent decrease in mitotic index and a rise in mitotic aberrations when compared to the control. In both plant species, mutations were observed in all stages of mitotic cell cycle. The total percentage of aberrations was two fold higher at 400 mW than at 200 mW exposure.
Resumo:
This study reports on the influence of critical isolation factors on the subsequent culture of protoplasts of Lupinus albus L. Protoplasts were isolated from in vitro seedling cotyledons of five early maturing accessions in which protoplast yields and division frequencies appeared to be correlated as a high protoplast yield corresponded with a high division frequency. The overall difference among the accessions for mitosis was non- significant, although the highest yield and division frequency were observed in accession LA132, with Alban giving a significantly lower level. Accession Lucrop produced the lowest number of protoplasts, all of which collapsed during culture. Of the enzyme types used for tissue maceration, Pectolyase Y23, was significantly inferior to Macerase in terms of giving way to mitosis. The extent of division in Macerase- isolated protoplast population was 266% higher than that in the Pectolyase Y23- isolated one. The physiological maturity level of the explant, expressed in terms of developmental age, was optimal when 14 - 18- day- old seedling cotyledons were used for protoplast production and culture, rather than more mature ones, despite higher protoplast yields in the latter. On K8p medium, the protoplast division frequency was 129% greater when 18- day- old seedling cotyledons were used, than that with any other treatment. This work on protoplast culture of the potentially important lupin species, which is a pulse rich in dietary protein, oil and fibre, allows a further understanding of the biology, with an aim to advance lupin biotechnology.
Resumo:
The fat mass and obesity-associated (FTO) gene plays a pivotal role in regulating body weight and fat mass; however, the underlying mechanisms are poorly understood. Here we show that primary adipocytes and mouse embryonic fibroblasts (MEFs) derived from FTO overexpression (FTO-4) mice exhibit increased potential for adipogenic differentiation, while MEFs derived from FTO knockout (FTO-KO) mice show reduced adipogenesis. As predicted from these findings, fat pads from FTO-4 mice fed a high-fat diet show more numerous adipocytes. FTO influences adipogenesis by regulating events early in adipogenesis, during the process of mitotic clonal expansion. The effect of FTO on adipogenesis appears to be mediated via enhanced expression of the pro-adipogenic short isoform of RUNX1T1, which enhanced adipocyte proliferation, and is increased in FTO-4 MEFs and reduced in FTO-KO MEFs. Our findings provide novel mechanistic insight into how upregulation of FTO leads to obesity.
Resumo:
Two wild diploid (2n = 20 chromosomes) and self-pollinating Arachis species, Arachis Pintoi Krapov and W.C.Gregory and A. villosulicarpa Hoehne were submmited to C-band technique to karyotype analyses. Root tips were employed in the analyses. Morphometric data chose that chromosome lengths varied from 3.12 in A. villosulicarpa to 1.45 in A. Pintoi. Karyotype formula obtained was 10sm to A. Pintoi and 9sm + 1m to A. villosulicarpa. There was a predominance of pericentromeric C-band in all mitotic metaphasic chromosomes in both species. Besides C-band values, both species still did not differ in respect to chromosome absolute and relative lengths, centromeric index, symmetry index and total karyotype haploid length. C-band and morphometric data did not show strong or significant differences which could separate these two species of peanut which belong to evolutive different sections.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O efeito de duas concentrações de cafeína (1500 e 2500 mg/ml) sobre o índice mitótico em Drosophila prosaltans foi analisado em células de gânglios cerebrais de larvas. Embora as diferenças detectadas entre células controle e tratadas não sejam significativas, as porcentagens obtidas poderiam ser sugestivas de algum efeito da cafeína ampliando a duração do processo de divisão celular
Resumo:
Within a total of 50 analyzed specimens a male individual of Trichomycterus davisi has been recorded with 81 chromosomes including 60 metacentric, 18 submetacentric and three subtelocentric chromosomes. When compared with diploid individuals (2n = 54) and the morphological standard of chromosomes, this male is a triploid with 3 = 81 chromosomes. Since staining with silver nitrate indicates three active nucleolar organizer regions (NORs), the three NOR- bearing chromosomes in this individual are genetically active. Analysis of the synaptonemal complex (SC) by electronic microscopy shows that there is an incomplete pairing of the third set of chromosomes in the triploid individual.
Resumo:
To investigate the expression of a marker of cell proliferation (PCNA/Cyclin) and its putative relationship with histological grading, mitotic index and estrogen receptor immunoreactivity, we studied twenty-seven cases of invasive breast carcinoma in formalin-fixed, paraffin-embedded tissue sections. The PCNA and estrogen receptor were detected by the PC10 and H222 monoclonal antibodies respectively, using an avidin-biotin-pernxidase method. The median value of PCNA index was 20.9% with a range from 1.4 to 84.2%. We did not find any significant relationship between PCNA index anti the histological grading, mitotic index and estrogen receptor immunoreactivity. We conclude that PCNA detected by the monoclonal antibody PC10 in formalin-fixed material looks at present unrealiable as a proliferation marker in breast carcinoma.
Resumo:
Two wild diploid (2n = 20 chromosomes) and self-pollinating Arachis species, Arachis Pintoi Krapov and W.C. Gregory and A. villosulicarpa Hoehne were submmited to C-band technique to karyotype analyses. Root tips were employed in the analyses. Morphometric data chose that chromosome lengths varied from 3.12 in A. villosulicarpa to 1.45 in A. Pintoi. Karyotype formula obtained was 10sm to A. Pintoi and 9sm + 1m to A. villosulicarpa. There was a predominance of pericentromeric C-band in all mitotic metaphasic chromosomes in both species. Besides C-band values, both species still did not differ in respect to chromosome absolute and relative lengths, centromeric index, symmetry index and total karyotype haploid length. C-band and morphometric data did not show strong or significant differences which could separate these two species of peanut which belong to evolutive different sections.
Resumo:
As a contribution towards detecting the genetic effects of low doses of genotoxic physical agents, this paper deals with the consequences of low-dose X-rays in the Aspergillus nidulans genome. The irradiation doses studied were those commonly used in dental clinics (1-5 cGy). Even very low doses promoted increased mitotic crossing-over frequencies in diploid strains heterozygous for several genetic markers including the ones involved in DNA repair and recombination mechanisms. Genetic markers of several heterozygous strains were individually analyzed disclosing that some markers were especially sensitive to the treatments. These markers should be chosen as bio-indicators in the homozygotization index assay to better detect the recombinogenic/ carcinogenic genomic effects of low-dose X-rays. ©FUNPEC-RP.
Resumo:
Bullfrog stem spermatogonia, also named primordial germ cells (PGCs), show strong testosterone immunolabeling in winter, but no or weak testosterone immunoexpression in summer. Thus, the role of testosterone in these cells needs to be clarified. In this study, we proposed to evaluate whether PGCs express aromatase and estrogen receptors, and verify a possible role of estrogen in PGCs seasonal proliferation. Testes of male adult bullfrogs, collected in winter (WG) and summer (SG), were fixed and embedded in historesin, for quantitative analysis, or paraffin for immunohistochemistry (IHC). The number of haematoxylin/eosin stained PGCs/lobular area was obtained. Proliferating cell nuclear antigen (PCNA), aromatase, estrogen receptor β (ERβ) and PCNA/ERβ double immunolabeling were detected by IHC. The number of PCNA-positive PGCs and the histological score (HSCORE) of aromatase and ERβ immunolabeled PGCs were obtained. Although the number of PGCs increased significantly in WG, a high number of PCNA-positive PGCs was observed in summer. Moreover, aromatase and ERβ HSCORE was higher in SG than WG. The results indicate that PGCs express a seasonal proliferative activity; the low mitotic activity in winter is related to the maximal limit of germ cells which can be supported in the large lobules. In SG, the increased ERβ and aromatase HSCORE suggests that testosterone is converted into estrogen from winter to summer. Moreover, the parallelism between the high PGCs mitotic activity and ERβ immunoexpression suggest a participation of estrogen in the control of the PGCs seasonal proliferative activity which guarantee the formation of new germ cysts from summer to next autumn. © 2012 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)