921 resultados para mitochondrial DNA copy number


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aim of the study: Genomic gains and losses play a crucial role in the development and progression of DLBCL and are closely related to gene expression profiles (GEP), including the germinal center B-cell like (GCB) and activated B-cell like (ABC) cell of origin (COO) molecular signatures. To identify new oncogenes or tumor suppressor genes (TSG) involved in DLBCL pathogenesis and to determine their prognostic values, an integrated analysis of high-resolution gene expression and copy number profiling was performed. Patients and methods: Two hundred and eight adult patients with de novo CD20+ DLBCL enrolled in the prospective multicentric randomized LNH-03 GELA trials (LNH03-1B, -2B, -3B, 39B, -5B, -6B, -7B) with available frozen tumour samples, centralized reviewing and adequate DNA/RNA quality were selected. 116 patients were treated by Rituximab(R)-CHOP/R-miniCHOP and 92 patients were treated by the high dose (R)-ACVBP regimen dedicated to patients younger than 60 years (y) in frontline. Tumour samples were simultaneously analysed by high resolution comparative genomic hybridization (CGH, Agilent, 144K) and gene expression arrays (Affymetrix, U133+2). Minimal common regions (MCR), as defined by segments that affect the same chromosomal region in different cases, were delineated. Gene expression and MCR data sets were merged using Gene expression and dosage integrator algorithm (GEDI, Lenz et al. PNAS 2008) to identify new potential driver genes. Results: A total of 1363 recurrent (defined by a penetrance > 5%) MCRs within the DLBCL data set, ranging in size from 386 bp, affecting a single gene, to more than 24 Mb were identified by CGH. Of these MCRs, 756 (55%) showed a significant association with gene expression: 396 (59%) gains, 354 (52%) single-copy deletions, and 6 (67%) homozygous deletions. By this integrated approach, in addition to previously reported genes (CDKN2A/2B, PTEN, DLEU2, TNFAIP3, B2M, CD58, TNFRSF14, FOXP1, REL...), several genes targeted by gene copy abnormalities with a dosage effect and potential physiopathological impact were identified, including genes with TSG activity involved in cell cycle (HACE1, CDKN2C) immune response (CD68, CD177, CD70, TNFSF9, IRAK2), DNA integrity (XRCC2, BRCA1, NCOR1, NF1, FHIT) or oncogenic functions (CD79b, PTPRT, MALT1, AUTS2, MCL1, PTTG1...) with distinct distribution according to COO signature. The CDKN2A/2B tumor suppressor locus (9p21) was deleted homozygously in 27% of cases and hemizygously in 9% of cases. Biallelic loss was observed in 49% of ABC DLBCL and in 10% of GCB DLBCL. This deletion was strongly correlated to age and associated to a limited number of additional genetic abnormalities including trisomy 3, 18 and short gains/losses of Chr. 1, 2, 19 regions (FDR < 0.01), allowing to identify genes that may have synergistic effects with CDKN2A/2B inactivation. With a median follow-up of 42.9 months, only CDKN2A/2B biallelic deletion strongly correlates (FDR p.value < 0.01) to a poor outcome in the entire cohort (4y PFS = 44% [32-61] respectively vs. 74% [66-82] for patients in germline configuration; 4y OS = 53% [39-72] vs 83% [76-90]). In a Cox proportional hazard prediction of the PFS, CDKN2A/2B deletion remains predictive (HR = 1.9 [1.1-3.2], p = 0.02) when combined with IPI (HR = 2.4 [1.4-4.1], p = 0.001) and GCB status (HR = 1.3 [0.8-2.3], p = 0.31). This difference remains predictive in the subgroup of patients treated by R-CHOP (4y PFS = 43% [29-63] vs. 66% [55-78], p=0.02), in patients treated by R-ACVBP (4y PFS = 49% [28-84] vs. 83% [74-92], p=0.003), and in GCB (4y PFS = 50% [27-93] vs. 81% [73-90], p=0.02), or ABC/unclassified (5y PFS = 42% [28-61] vs. 67% [55-82] p = 0.009) molecular subtypes (Figure 1). Conclusion: We report for the first time an integrated genetic analysis of a large cohort of DLBCL patients included in a prospective multicentric clinical trial program allowing identifying new potential driver genes with pathogenic impact. However CDKN2A/2B deletion constitutes the strongest and unique prognostic factor of chemoresistance to R-CHOP, regardless the COO signature, which is not overcome by a more intensified immunochemotherapy. Patients displaying this frequent genomic abnormality warrant new and dedicated therapeutic approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : A preliminary understanding of the phenotypic effect of copy number variation (CNV) of DNA segments is emerging. These rearrangements were shown to influence, in a somewhat dose-dependent manner, the expression of genes mapping within them. They were also shown to modify the expression of genes located on their Hanks, sometimes at great distance. Here, we demonstrate by monitoring these effects at multiple life stages, that these controls over expression are effective throughout mouse development. Similarly, we observe that the more specific spatial expression patterns of CNV genes are maintained through life. However, 'we find that some brain- expressed genes mapping within CNVS appear to be under compensatory loops only at specific time-points, indicating that the effect of CNVS on these genes is modulated during development. Notably, we also observe that CNV genes are significantly enriched within transcripts that show variable time-course expression between strains. Thus, modifying the copy number of a gene may potentially alter not only its expression level, but its timing of expression as well. Résume : Nous commençons à comprendre les effets phénotypiques liés aux séquences d'ADN qui changent de nombre de copies d'un individu a l'autre. Des travaux précédents ont montré que ces variante de nombre de copies (CNVS) avaient une influence sur l'expression non seulement des gènes se trouvant dans le réarrangement, mais aussi sur ceux se trouvant à une certaine distance. Le présent travail étudie ces effets à différents stades du développement de la souris allant d'un embryon de deux semaines à la souris adulte. Nous avons observé que certains gènes exprimés dans le cerveau semblent soumis à un contrôle plus strict a certaines étapes du développement suggèrent que l'effet des CNVs est modulé différemment au cours de la vie. Notre travail sur trois souches différentes de souris a permis de montrer que les gènes ayant un profil d'expression différent dans le temps entre souches sont enrichis en gènes se trouvant dans des CNVs. Ceci nous amène à penser que les CNVs ont, non seulement une influence sur le niveau d'expression des gènes, mais aussi sur les moments durant lesquels ils seront exprimés. Résumé pour un large public : De nombreuses maladies sont dues soit a un gain (on parle alors de duplication) soit à une perte de matériel génétique (il s'agit dune délétion). Bien que les recherches visant à identifier les mécanismes moléculaires liés à ces réarrangements de notre génome progressent continuellement, la plupart des causes des maladies génétiques restent à élucider. Certaines parties de notre génome sont présentes en un nombre de copies qui diffère d'un individu à l'autre sans pour autant provoquer une ou des maladies. Ces segments d'ADN qui varient en nombre sont appelés Copy Number Variant (CNVs). Ils couvrent environ 12% de notre matériel génétique. Des études menées sur différents modèles animaux ont montré que les CNVs avaient une influence aussi bien sur les gènes qui sont a l'intérieur des CNVs que sur ceux qui sont dans leur voisinage. Ce travail étudie l'effet des CNVs à travers différents stades du développement de la souris. Nous avons démontré que les segments d'ADN qui varient en nombre de copies ont des effets variables selon le stade auxquels ils sont mesurés. Ainsi, les CNVs ont non seulement un impact sur l'expression des gènes présents dans ces régions et dans leur voisinage, mais influencent également leurs profils d'expression au cours du temps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractAlthough the genomes from any two human individuals are more than 99.99% identical at the sequence level, some structural variation can be observed. Differences between genomes include single nucleotide polymorphism (SNP), inversion and copy number changes (gain or loss of DNA). The latter can range from submicroscopic events (CNVs, at least 1kb in size) to complete chromosomal aneuploidies. Small copy number variations have often no (lethal) consequences to the cell, but a few were associated to disease susceptibility and phenotypic variations. Larger re-arrangements (i.e. complete chromosome gain) are frequently associated with more severe consequences on health such as genomic disorders and cancer. High-throughput technologies like DNA microarrays enable the detection of CNVs in a genome-wide fashion. Since the initial catalogue of CNVs in the human genome in 2006, there has been tremendous interest in CNVs both in the context of population and medical genetics. Understanding CNV patterns within and between human populations is essential to elucidate their possible contribution to disease. But genome analysis is a challenging task; the technology evolves rapidly creating needs for novel, efficient and robust analytical tools which need to be compared with existing ones. Also, while the link between CNV and disease has been established, the relative CNV contribution is not fully understood and the predisposition to disease from CNVs of the general population has not been yet investigated.During my PhD thesis, I worked on several aspects related to CNVs. As l will report in chapter 3, ! was interested in computational methods to detect CNVs from the general population. I had access to the CoLaus dataset, a population-based study with more than 6,000 participants from the Lausanne area. All these individuals were analysed on SNP arrays and extensive clinical information were available. My work explored existing CNV detection methods and I developed a variety of metrics to compare their performance. Since these methods were not producing entirely satisfactory results, I implemented my own method which outperformed two existing methods. I also devised strategies to combine CNVs from different individuals into CNV regions.I was also interested in the clinical impact of CNVs in common disease (chapter 4). Through an international collaboration led by the Centre Hospitalier Universitaire Vaudois (CHUV) and the Imperial College London I was involved as a main data analyst in the investigation of a rare deletion at chromosome 16p11 detected in obese patients. Specifically, we compared 8,456 obese patients and 11,856 individuals from the general population and we found that the deletion was accounting for 0.7% of the morbid obesity cases and was absent in healthy non- obese controls. This highlights the importance of rare variants with strong impact and provides new insights in the design of clinical studies to identify the missing heritability in common disease.Furthermore, I was interested in the detection of somatic copy number alterations (SCNA) and their consequences in cancer (chapter 5). This project was a collaboration initiated by the Ludwig Institute for Cancer Research and involved other groups from the Swiss Institute of Bioinformatics, the CHUV and Universities of Lausanne and Geneva. The focus of my work was to identify genes with altered expression levels within somatic copy number alterations (SCNA) in seven metastatic melanoma ceil lines, using CGH and SNP arrays, RNA-seq, and karyotyping. Very few SCNA genes were shared by even two melanoma samples making it difficult to draw any conclusions at the individual gene level. To overcome this limitation, I used a network-guided analysis to determine whether any pathways, defined by amplified or deleted genes, were common among the samples. Six of the melanoma samples were potentially altered in four pathways and five samples harboured copy-number and expression changes in components of six pathways. In total, this approach identified 28 pathways. Validation with two external, large melanoma datasets confirmed all but three of the detected pathways and demonstrated the utility of network-guided approaches for both large and small datasets analysis.RésuméBien que le génome de deux individus soit similaire à plus de 99.99%, des différences de structure peuvent être observées. Ces différences incluent les polymorphismes simples de nucléotides, les inversions et les changements en nombre de copies (gain ou perte d'ADN). Ces derniers varient de petits événements dits sous-microscopiques (moins de 1kb en taille), appelés CNVs (copy number variants) jusqu'à des événements plus large pouvant affecter des chromosomes entiers. Les petites variations sont généralement sans conséquence pour la cellule, toutefois certaines ont été impliquées dans la prédisposition à certaines maladies, et à des variations phénotypiques dans la population générale. Les réarrangements plus grands (par exemple, une copie additionnelle d'un chromosome appelée communément trisomie) ont des répercutions plus grave pour la santé, comme par exemple dans certains syndromes génomiques et dans le cancer. Les technologies à haut-débit telle les puces à ADN permettent la détection de CNVs à l'échelle du génome humain. La cartographie en 2006 des CNV du génome humain, a suscité un fort intérêt en génétique des populations et en génétique médicale. La détection de différences au sein et entre plusieurs populations est un élément clef pour élucider la contribution possible des CNVs dans les maladies. Toutefois l'analyse du génome reste une tâche difficile, la technologie évolue très rapidement créant de nouveaux besoins pour le développement d'outils, l'amélioration des précédents, et la comparaison des différentes méthodes. De plus, si le lien entre CNV et maladie a été établit, leur contribution précise n'est pas encore comprise. De même que les études sur la prédisposition aux maladies par des CNVs détectés dans la population générale n'ont pas encore été réalisées.Pendant mon doctorat, je me suis concentré sur trois axes principaux ayant attrait aux CNV. Dans le chapitre 3, je détaille mes travaux sur les méthodes d'analyses des puces à ADN. J'ai eu accès aux données du projet CoLaus, une étude de la population de Lausanne. Dans cette étude, le génome de plus de 6000 individus a été analysé avec des puces SNP et de nombreuses informations cliniques ont été récoltées. Pendant mes travaux, j'ai utilisé et comparé plusieurs méthodes de détection des CNVs. Les résultats n'étant pas complètement satisfaisant, j'ai implémenté ma propre méthode qui donne de meilleures performances que deux des trois autres méthodes utilisées. Je me suis aussi intéressé aux stratégies pour combiner les CNVs de différents individus en régions.Je me suis aussi intéressé à l'impact clinique des CNVs dans le cas des maladies génétiques communes (chapitre 4). Ce projet fut possible grâce à une étroite collaboration avec le Centre Hospitalier Universitaire Vaudois (CHUV) et l'Impérial College à Londres. Dans ce projet, j'ai été l'un des analystes principaux et j'ai travaillé sur l'impact clinique d'une délétion rare du chromosome 16p11 présente chez des patients atteints d'obésité. Dans cette collaboration multidisciplinaire, nous avons comparés 8'456 patients atteint d'obésité et 11 '856 individus de la population générale. Nous avons trouvés que la délétion était impliquée dans 0.7% des cas d'obésité morbide et était absente chez les contrôles sains (non-atteint d'obésité). Notre étude illustre l'importance des CNVs rares qui peuvent avoir un impact clinique très important. De plus, ceci permet d'envisager une alternative aux études d'associations pour améliorer notre compréhension de l'étiologie des maladies génétiques communes.Egalement, j'ai travaillé sur la détection d'altérations somatiques en nombres de copies (SCNA) et de leurs conséquences pour le cancer (chapitre 5). Ce projet fut une collaboration initiée par l'Institut Ludwig de Recherche contre le Cancer et impliquant l'Institut Suisse de Bioinformatique, le CHUV et les Universités de Lausanne et Genève. Je me suis concentré sur l'identification de gènes affectés par des SCNAs et avec une sur- ou sous-expression dans des lignées cellulaires dérivées de mélanomes métastatiques. Les données utilisées ont été générées par des puces ADN (CGH et SNP) et du séquençage à haut débit du transcriptome. Mes recherches ont montrées que peu de gènes sont récurrents entre les mélanomes, ce qui rend difficile l'interprétation des résultats. Pour contourner ces limitations, j'ai utilisé une analyse de réseaux pour définir si des réseaux de signalisations enrichis en gènes amplifiés ou perdus, étaient communs aux différents échantillons. En fait, parmi les 28 réseaux détectés, quatre réseaux sont potentiellement dérégulés chez six mélanomes, et six réseaux supplémentaires sont affectés chez cinq mélanomes. La validation de ces résultats avec deux larges jeux de données publiques, a confirmée tous ces réseaux sauf trois. Ceci démontre l'utilité de cette approche pour l'analyse de petits et de larges jeux de données.Résumé grand publicL'avènement de la biologie moléculaire, en particulier ces dix dernières années, a révolutionné la recherche en génétique médicale. Grâce à la disponibilité du génome humain de référence dès 2001, de nouvelles technologies telles que les puces à ADN sont apparues et ont permis d'étudier le génome dans son ensemble avec une résolution dite sous-microscopique jusque-là impossible par les techniques traditionnelles de cytogénétique. Un des exemples les plus importants est l'étude des variations structurales du génome, en particulier l'étude du nombre de copies des gènes. Il était établi dès 1959 avec l'identification de la trisomie 21 par le professeur Jérôme Lejeune que le gain d'un chromosome supplémentaire était à l'origine de syndrome génétique avec des répercussions graves pour la santé du patient. Ces observations ont également été réalisées en oncologie sur les cellules cancéreuses qui accumulent fréquemment des aberrations en nombre de copies (telles que la perte ou le gain d'un ou plusieurs chromosomes). Dès 2004, plusieurs groupes de recherches ont répertorié des changements en nombre de copies dans des individus provenant de la population générale (c'est-à-dire sans symptômes cliniques visibles). En 2006, le Dr. Richard Redon a établi la première carte de variation en nombre de copies dans la population générale. Ces découvertes ont démontrées que les variations dans le génome était fréquentes et que la plupart d'entre elles étaient bénignes, c'est-à-dire sans conséquence clinique pour la santé de l'individu. Ceci a suscité un très grand intérêt pour comprendre les variations naturelles entre individus mais aussi pour mieux appréhender la prédisposition génétique à certaines maladies.Lors de ma thèse, j'ai développé de nouveaux outils informatiques pour l'analyse de puces à ADN dans le but de cartographier ces variations à l'échelle génomique. J'ai utilisé ces outils pour établir les variations dans la population suisse et je me suis consacré par la suite à l'étude de facteurs pouvant expliquer la prédisposition aux maladies telles que l'obésité. Cette étude en collaboration avec le Centre Hospitalier Universitaire Vaudois a permis l'identification d'une délétion sur le chromosome 16 expliquant 0.7% des cas d'obésité morbide. Cette étude a plusieurs répercussions. Tout d'abord elle permet d'effectuer le diagnostique chez les enfants à naître afin de déterminer leur prédisposition à l'obésité. Ensuite ce locus implique une vingtaine de gènes. Ceci permet de formuler de nouvelles hypothèses de travail et d'orienter la recherche afin d'améliorer notre compréhension de la maladie et l'espoir de découvrir un nouveau traitement Enfin notre étude fournit une alternative aux études d'association génétique qui n'ont eu jusqu'à présent qu'un succès mitigé.Dans la dernière partie de ma thèse, je me suis intéressé à l'analyse des aberrations en nombre de copies dans le cancer. Mon choix s'est porté sur l'étude de mélanomes, impliqués dans le cancer de la peau. Le mélanome est une tumeur très agressive, elle est responsable de 80% des décès des cancers de la peau et est souvent résistante aux traitements utilisés en oncologie (chimiothérapie, radiothérapie). Dans le cadre d'une collaboration entre l'Institut Ludwig de Recherche contre le Cancer, l'Institut Suisse de Bioinformatique, le CHUV et les universités de Lausanne et Genève, nous avons séquencés l'exome (les gènes) et le transcriptome (l'expression des gènes) de sept mélanomes métastatiques, effectués des analyses du nombre de copies par des puces à ADN et des caryotypes. Mes travaux ont permis le développement de nouvelles méthodes d'analyses adaptées au cancer, d'établir la liste des réseaux de signalisation cellulaire affectés de façon récurrente chez le mélanome et d'identifier deux cibles thérapeutiques potentielles jusqu'alors ignorées dans les cancers de la peau.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA), a maternally inherited 16.6-Kb molecule crucial for energy production, is implicated in numerous human traits and disorders. It has been hypothesized that the presence of mutations in the mtDNA may contribute to the complex genetic basis of schizophreniadisease, due to the evidence of maternal inheritance and the presence of schizophrenia symptoms in patients affected of a mitochondrial disorder related to a mtDNA mutation. The present project aims to study the association of variants of mitochondrial DNA (mtDNA), and an increased risk of schizophrenia in a cohort of patients and controls from the same population. The entire mtDNA of 55 schizophrenia patients with an apparent maternal transmission of the disease and 38 controls was sequenced by Next Generation Sequencing (Ion Torrent PGM, Life Technologies) and compared to the reference sequence. The current method for establishing mtDNA haplotypes is Sanger sequencing, which is laborious, timeconsuming, and expensive. With the emergence of Next Generation Sequencing technologies, this sequencing process can be much more quickly and cost-efficiently. We have identified 14 variants that have not been previously reported. Two of them were missense variants: MTATP6 p.V113M and MTND5 p.F334L ,and also three variants encoding rRNA and one variant encoding tRNA. Not significant differences have been found in the number of variants between the two groups. We found that the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of the bioinformatics analysis and annotation step would be desirable to facilitate the application of NGS in mtDNA analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17-78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have determined the copy number and the presence of full-size hobo transposable elements in eight Brasilian strains of Drosophila melanogaster. Genomic DNA was digested with AvaII and XhoI restriction enzymes, respectively, and probed with a 963 bp sequence of the hobo element. Variable numbers of full-sized and defective elements were detected in all strains. The range of the copy number was 22.13 +/- 4.52. Blots showed the presence of a 2.6 kb fragment, corresponding to the complete element, in all strains exception of one and the 1.0 kb sequence, correponding to the Th1 and Th2 repressor elements. There was neither association among copy numbers of hobo elements and latitude nor the mean annual temperatures in the original geographical region of each strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sandhoff disease (SD) is a lysosomal disorder caused by mutations in the HEXB gene. To date, 43 mutations of HEXB have been described, including 3 large deletions. Here, we have characterized 14 unrelated SD patients and developed a Multiplex Ligation-dependent Probe Amplification (MLPA) assay to investigate the presence of large HEXB deletions. Overall, we identified 16 alleles, 9 of which were novel, including 4 sequence variation leading to aminoacid changes [c.626C>T (p.T209I), c.634C>A (p.H212N), c.926G>T (p.C309F), c.1451G>A (p.G484E)] 3 intronic mutations (c.1082+5G>A, c.1242+1G>A, c.1169+5G>A), 1 nonsense mutation c.146C>A (p.S49X) and 1 small in-frame deletion c.1260_1265delAGTTGA (p.V421_E422del). Using the new MLPA assay, 2 previously described deletions were identified. In vitro expression studies showed that proteins bearing aminoacid changes p.T209I and p.G484E presented a very low or absent activity, while proteins bearing the p.H212N and p.C309F changes retained a significant residual activity. The detrimental effect of the 3 novel intronic mutations on the HEXB mRNA processing was demonstrated using a minigene assay. Unprecedentedly, minigene studies revealed the presence of a novel alternative spliced HEXB mRNA variant also present in normal cells. In conclusion, we provided new insights into the molecular basis of SD and validated an MLPA assay for detecting large HEXB deletions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Williams-Beuren syndrome (WBS; OMIM 194050) is caused by a hemizygous contiguous gene microdeletion at 7q11.23. Supravalvular aortic stenosis (SVAS), mental retardation, and overfriendliness comprise typical symptoms of WBS. Although fluorescence in situ hybridization (FISH) is considered the gold standard technique, the microsatellite DNA markers and multiplex ligation-dependent probe amplification (MLPA) could be used for to confirm the diagnosis of WBS. Results We have evaluated a total cohort of 88 patients with a suspicion clinical diagnosis of WBS using a collection of five markers (D7S1870, D7S489, D7S613, D7S2476, and D7S489_A) and a commercial MLPA kit (P029). The microdeletion was present in 64 (72.7%) patients and absent in 24 (27.3%) patients. The parental origin of deletion was maternal in 36 of 64 patients (56.3%) paternal in 28 of 64 patients (43.7%). The deletion size was 1.55 Mb in 57 of 64 patients (89.1%) and 1.84 Mb in 7 of 64 patients (10.9%). The results were concordant using both techniques, except for four patients whose microsatellite markers were uninformative. There were no clinical differences in relation to either the size or parental origin of the deletion. Conclusion MLPA was considered a faster and more economical method in a single assay, whereas the microsatellite markers could determine both the size and parental origin of the deletion in WBS. The microsatellite marker and MLPA techniques are effective in deletion detection in WBS, and both methods provide a useful diagnostic strategy mainly for developing countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La crescita normale di un individuo è il risultato dell’azione coordinata di molteplici ormoni e recettori codificati da geni e a tal proposito, discreto interesse è stato dato ai geni tipici dell’asse del GH. Tuttavia altri geni, più a monte di questi e responsabili dello sviluppo dell’ipofisi contribuiscono alla crescita normale o patologica. Alcuni geni studiati sono POU1F1, PROP1, LHX3, LHX4, HESX1, SOX3 e svariate loro mutazioni sono state identificate come causa di panipopituarismo (CPHD=Combined Pituitary Hormone Deficiency). In realtà la ricerca genetica non spiega ancora molte anomalie ipofisarie e molte mutazioni devono ancora essere identificate. Uno degli scopi del dottorato, svoltosi nel laboratorio di Genetica molecolare di Pediatria, è stata l’identificazione di mutazioni geniche da un gruppo di pazienti CPHD considerando in particolare i geni POU1F1, LHX3, SOX3, non ancora messi a punto presso il laboratorio. L’approccio sperimentale si è basato sulle seguenti fasi: prelievo delle informazioni di sequenza da GeneBank, progettazione di primers per amplificare le porzioni esoniche, messa a punto delle fasi della PCR e del sequenziamento, analisi della sequenza e confronto con le informazioni di sequenza depositate allo scopo di rintracciare eventuali mutazioni o varianti. La bassa percentuale di mutazioni in questi geni non ha permesso finora di rintracciare mutazioni nelle porzioni esoniche salvo che in un soggetto, nell’esone 6 di LHX3b (nuova mutazione, recessiva eterozigote, c.1248A>G implicata nella mutazione p.T377A della sequenza proteica). Un metodo di screening di questa mutazione impiegando l’enzima di restrizione SacII è stato usato, senza rilevare nessun altra occorrenza dell’allele mutato in 53 soggetti di controllo. Oltre alla messa a punto del sequenziamento e di alcune tecniche di analisi di singoli SNP o piccoli INDELs per i 3 geni, la ricerca svolta è stata orientata all’impiego di metodi di rilevamento di riarrangiamenti genetici comportanti ampie delezioni e/o variazioni del copy-number di esoni/interi geni detto MLPA (Multiplex Ligation-dependent Probe Amplification) e progettato da MRC-Holland. Il sequenziamento infatti non permette di rilevare tali alterazioni quando sono ampie ed in eterozigosi. Per esempio, in un’ampia delezione in eterozigosi, l’intervallo delimitato dai primers usati per la PCR può non includere totalmente la porzione interessata da delezione su un cromosoma cosicché la PCR ed il sequnziamento si basano solo sulle informazioni dell’altro cromosoma non deleto. Un vantaggio della tecnica MLPA, è l’analisi contemporanea di una quarantina di siti posti su svariati geni. Questa metodo tuttavia può essere affetto da un certo margine di errore spesso dipendente dalla qualità del DNA e dovrebbe essere affiancato e validato da altre tecniche più impegnativa dal punto di vista sperimentale ma più solide, per esempio la Real Time PCR detta anche PCR quantitativa (qPCR). In laboratorio, grazie all’MLPA si è verificata la condizione di delezione eterozigote di un paziente “storico” per il gene GH1 e la stessa mutazione è stata rilevata anche con la qPCR usando lo strumento Corbett Rotor Gene 6000 (Explera). Invece un’analisi solo con la qPCR di variazioni del copy-number (CNV) per SOX3 in pazienti maschili non ha ancora evidenziato anomalie. Entrambe le tecniche hanno aspetti interessanti, il miglior approccio al momento sembra un’analisi iniziale di pazienti con l’MLPA, seguita dalla verifica di un eventuale esito anomalo impiegando la real-time PCR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amplifications and deletions of chromosomal DNA, as well as copy-neutral loss of heterozygosity have been associated with diseases processes. High-throughput single nucleotide polymorphism (SNP) arrays are useful for making genome-wide estimates of copy number and genotype calls. Because neighboring SNPs in high throughput SNP arrays are likely to have dependent copy number and genotype due to the underlying haplotype structure and linkage disequilibrium, hidden Markov models (HMM) may be useful for improving genotype calls and copy number estimates that do not incorporate information from nearby SNPs. We improve previous approaches that utilize a HMM framework for inference in high throughput SNP arrays by integrating copy number, genotype calls, and the corresponding confidence scores when available. Using simulated data, we demonstrate how confidence scores control smoothing in a probabilistic framework. Software for fitting HMMs to SNP array data is available in the R package ICE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliable quantification of gene copy number variations is a precondition for future investigations regarding their functional relevance. To date, there is no generally accepted gold standard method for copy number quantification, and methods in current use have given inconsistent results in selected cohorts. In this study, we compare two methods for copy number quantification. beta-defensin gene copy numbers were determined in parallel in 80 genomic DNA samples by real-time PCR and multiplex ligation-dependent probe amplification (MLPA). The pyrosequencing-based paralog ratio test (PPRT) was used as a standard of comparison in 79 out of 80 samples. Realtime PCR and MPLA results confirmed concordant DEFB4, DEFB103A, and DEFB104A copy numbers within samples. These two methods showed identical results in 32 out of 80 samples; 29 of these 32 samples comprised four or fewer copies. The coefficient of variation of MLPA is lower compared with PCR. In addition, the consistency between MLPA and PPRT is higher than either PCR/MLPA or PCR/PPRT consistency. In summary, these results suggest that MLPA is superior to real-time PCR in beta-defensin copy number quantification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The copy number variation (CNV) in beta-defensin genes (DEFB) on human chromosome 8p23 has been proposed to contribute to the phenotypic differences in inflammatory diseases. However, determination of exact DEFB CN is a major challenge in association studies. Quantitative real-time PCR (qPCR), paralog ratio tests (PRT) and multiplex ligation-dependent probe amplification (MLPA) have been extensively used to determine DEFB CN in different laboratories, but inter-method inconsistencies were observed frequently. In this study we asked which one is superior among the three methods for DEFB CN determination. RESULTS We developed a clustering approach for MLPA and PRT to statistically correlate data from a single experiment. Then we compared qPCR, a newly designed PRT and MLPA for DEFB CN determination in 285 DNA samples. We found MLPA had the best convergence and clustering results of the raw data and the highest call rate. In addition, the concordance rates between MLPA or PRT and qPCR (32.12% and 37.99%, respectively) were unacceptably low with underestimated CN by qPCR. Concordance rate between MLPA and PRT (90.52%) was high but PRT systematically underestimated CN by one in a subset of samples. In these samples a sequence variant which caused complete PCR dropout of the respective DEFB cluster copies was found in one primer binding site of one of the targeted paralogous pseudogenes. CONCLUSION MLPA is superior to PRT and even more to qPCR for DEFB CN determination. Although the applied PRT provides in most cases reliable results, such a test is particularly sensitive to low-frequency sequence variations preferably accumulating in loci like pseudogenes which are most likely not under selective pressure. In the light of the superior performance of multiplex assays, the drawbacks of such single PRTs could be overcome by combining more test markers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to explore the diversity and selective signatures of duplication and deletion human copy number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single nucleotide variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear and mitochondrial genomes coevolve to optimize approximately 100 different interactions necessary for an efficient ATP-generating system. This coevolution led to a species-specific compatibility between these genomes. We introduced mitochondrial DNA (mtDNA) from different primates into mtDNA-less human cells and selected for growth of cells with a functional oxidative phosphorylation system. mtDNA from common chimpanzee, pigmy chimpanzee, and gorilla were able to restore oxidative phosphorylation in the context of a human nuclear background, whereas mtDNA from orangutan, and species representative of Old-World monkeys, New-World monkeys, and lemurs were not. Oxygen consumption, a sensitive index of respiratory function, showed that mtDNA from chimpanzee, pigmy chimpanzee, and gorilla replaced the human mtDNA and restored respiration to essentially normal levels. Mitochondrial protein synthesis was also unaltered in successful “xenomitochondrial cybrids.” The abrupt failure of mtDNA from primate species that diverged from humans as recently as 8–18 million years ago to functionally replace human mtDNA suggests the presence of one or a few mutations affecting critical nuclear–mitochondrial genome interactions between these species. These cellular systems provide a demonstration of intergenus mtDNA transfer, expand more than 20-fold the number of mtDNA polymorphisms that can be analyzed in a human nuclear background, and provide a novel model for the study of nuclear–mitochondrial interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements We would like to thank all of the patients, relatives and control individuals who participated in the study. We are indebted to the late Prof. Walter Muir, Chair of Developmental Psychiatry and Honorary Consultant in Learning Disability Psychiatry, University of Edinburgh, who initiated these studies and whose work was dedicated to the welfare of the patients who generously participated. We are also grateful to Mrs. Pat Malloy for her assistance with DNA collection and MAQ assays screening of the Scottish samples. The Scottish sample collection was supported by a grant from the Chief Scientist Office (CSO), part of the Scottish Government Health and Social Care Directorates. This research was funded by grants from the CSO to B.S.P. (grant CZB/4/610), The Academy of Medical Sciences/Wellcome Trust to M.J. (grant R41455) and The RS Macdonald Charitable Trust (grant D21419 together with J.H.), the Swedish Research Council (grants 2003-5158 and 2006-4472), the Medical Faculty, Umeå University, and the County Councils of Västerbotten and Norrbotten, Sweden, as well as by grants from the Fund for Scientific Research Flanders (FWO-F), the Industrial Research Fund (IWT) and the Special Research Fund of the University of Antwerp, Belgium. M.J. is funded by a Wellcome Trust Clinical Research Fellowship for MB PhD graduates (R42811). We acknowledge the contribution of the personnel of the VIB Genetic Service Facility (http://www.vibgeneticservicefacility.be/) for the genetic analysis of the Swedish samples. Research nurses Gunnel Johansson, Lotta Kronberg, Tage Johansson and Lisbeth Bertilsson are thankfully acknowledged for their help and expertise. The Betula Study was funded by the Swedish Research Council (grants 345-2003-3883 and 315-2004-6977). We also acknowledge the contribution by the staff in the Betula project