936 resultados para microtubule associated protein 4


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nedd4 belongs to a family of ubiquitin-protein ligases that is characterized by 2-4 WW domains, a carboxyl-terminal Hect ((h) under bar omologous to (E) under bar6-AP (C) under bar arboxyl (t) under bar erminus)-domain and in most cases an amino-terminal C2 domain. We had previously identified a series of proteins that associates with the WW domains of Nedd4. In this paper, we demonstrate that one of the Nedd4-binding proteins, N4WBP5, belongs to a small group of evolutionarily conserved proteins with three transmembrane domains. N4WBP5 binds Nedd4 WW domains via the two PPXY motifs present in the amino terminus of the protein. In addition to Nedd4, N4WBP5 can interact with the WW domains of a number of Nedd4 family members and is ubiquitinated. Endogenous N4WBP5 localizes to the Golgi complex. Ectopic expression of the protein disrupts the structure of the Golgi, suggesting that N4WBP5 forms part of a family of integral Golgi membrane proteins. Based on previous observations in yeast, we propose that N4WBP5 may act as an adaptor for Nedd4-like proteins and their putative targets to control ubiquitin-dependent protein sorting and trafficking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Corticosteroids have recorded beneficial clinical effects and are widely used in medicine. In ophthalmology, besides their treatment benefits, side effects, including ocular toxicity have been observed especially when intraocular delivery is used. The mechanism of these toxic events remains, however, poorly understood. In our present study, we investigated the mechanisms and potential pathways of corticosteroid-induced retinal cell death. METHODS: Rats were sacrificed 24 h and 8 days after an intravitreous injection of 1 microl (40 microg) of Kenacort Retard. The eyes were processed for ultra structure analysis and detection of activated caspase-3, cytochrome-C, apoptosis-inducing factor (AIF), LEI-L-Dnase II, terminal transferase dUTP nick end labeling (TUNEL), and microtubule-associated protein 1-light chain 3 (MAP-LC3). In vitro, rat retinal pigment epithelial cells (RPE), retinal Müller glial cells (RMG) and human ARPE-19 cells were treated with triamcinolone acetonide (TA) or other glucocorticoids. Cell viability was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) assay and cell counts. Nuclei staining, TUNEL assay, annexin-V binding, activated caspase-3 and lactate dehydrogenase (LDH) production characterized cell death. Localization of cytochrome-C, AIF, LEI-and L-Dnase II, and staining with MAP-LC3 or monodansylcadaverine were also carried out. Finally, ARPE-19 cells transfected with AIP-1/Alix were exposed to TA. RESULTS: In vitro incubation of retinal cell in the presence of corticosteroids induced a specific and dose-dependent reduction of cell viability. These toxic events were not associated with the anti-inflammatory activity of these compounds but depended on the hydro solubility of their formulation. Before cell death, extensive cytoplasmic vacuolization was observed in the retinal pigment epithelial (RPE) cells in vivo and in vitro. The cells however, did not show known caspase-dependent or caspase-independent apoptotic reactions. These intracellular vacuoles were negative for MAP-LC3 but some stained positive for monodansylcadaverine. Furthermore, over expression of AIP-1/Alix inhibited RPE cell death. CONCLUSIONS: These observations suggest that corticosteroid-induced retinal cell death may be carried out mainly through a paraptosis pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mu hiding resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP(3)R2) regulates Ca(2+) release in the canalicular region of hepatocytes. However, the role of InsP(3)R2 and of Ca(2+) signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP(3)R2-mediated Ca(2+) signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP(3)R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca(2+) signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP(3)R2 was concentrated in the canalicular region of WT mice but absent in InsP(3)R2 KO livers, whereas expression and localization of InsP(3)R1 was preserved, and InsP(3)R3 was absent from both WT and KO livers. Ca(2+) signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP(3)R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetra-acetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP(3)R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. Conclusion: InsP(3)R2-mediated Ca(2+) signals enhance organic anion secretion into bile by targeting Mrp2 to the canalicular membrane. (HEPATOLOGY 2010;52:327-337)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Islet neogenesis associated protein (INGAP) increases islet mass and insulin secretion in neonatal and adult rat islets. lit the Present Study, we measured the short- and long-term effects of INGAP-PP (a pentadecapeptide having the 104-118 amino acid sequence of INGAP) upon islet protein expression and phosphorylation of components of the PI3K, MAPK and cholinergic pathways, and on insulin secretion. Short-term exposure of neonatal islets to INGAP-PP (90 s, 5, 15, and 30 min) significantly increased Akt1(-Ser473) and MAPK3/1(-Thr202/Tyr204) phosphorylation and INGAP-PP also acutely increased insulin secretion from islets perifused with 2 and 20 mM glucose. Islets cultured for 4 days in the presence of INGAP-PP showed an increased expression of Akt1, Frap1, and Mapk1 mRNAs as well as of the muscarinic M3 receptor subtype, and phospholipase C (PLC)-beta 2 proteins. These islets also showed increased Akt1 and MAPK3/1 protein phosphorylation. Brief exposure of INGAP-P-treated islets to carbachol (Cch) significantly increased P70S6K(-Thr389) and MAPK3/1 phosphorylation and these islets released more insulin when challenged with Cch that was prevented by the M3 receptor antagonist 4-DAMP in a concentration-dependent manner. In conclusion, these data indicate that short- and long-term exposure to INGAP-PP significantly affects the expression and the phosphorylation of proteins involved in islet PI3K and MAPK signaling pathways. The observations of INGAPP-PP-stimulated up-regulation of cholinergic M3 receptors and PLC-beta 2 proteins, enhanced P70S6K and MAIIK3/1 phosphorylation and Cch-induced insulin secretion suggest a participation of the cholinergic pathway in INGAP-PP-mediated effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steatotic livers show increased hepatic damage and impaired regeneration after partial hepatectomy (PH) under ischemia/reperfusion (I/R), which is commonly applied in clinical practice to reduce bleeding. The known function of retinol-binding protein 4 (RBP4) is to transport retinol in the circulation. We examined whether modulating RBP4 and/or retinol could protect steatotic and nonsteatotic livers in the setting of PH under I/R. Steatotic and nonsteatotic livers from Zucker rats were subjected to PH (70%) with 60 minutes of ischemia. RBP4 and retinol levels were measured and altered pharmacologically, and their effects on hepatic damage and regeneration were studied after reperfusion. Decreased RBP4 levels were observed in both liver types, whereas retinol levels were reduced only in steatotic livers. RBP4 administration exacerbated the negative consequences of liver surgery with respect to damage and liver regeneration in both liver types. RBP4 affected the mobilization of retinol from steatotic livers, and this revealed actions of RBP4 independent of simple retinol transport. The injurious effects of RBP4 were not due to changes in retinol levels. Treatment with retinol was effective only for steatotic livers. Indeed, retinol increased hepatic injury and impaired liver regeneration in nonsteatotic livers. In steatotic livers, retinol reduced damage and improved regeneration after surgery. These benefits of retinol were associated with a reduced accumulation of hepatocellular fat. Thus, strategies based on modulating RBP4 could be ineffective and possibly even harmful in both liver types in the setting of PH under I/R. In terms of clinical applications, a retinol pretreatment might open new avenues for liver surgery that specifically benefit the steatotic liver. Liver Transpl 18:1198-1208, 2012. (c) 2012 AASLD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alpha-tocopheryl succinate (alpha-TOS), a redox-silent analogue of vitamin E, induces apoptosis in multiple cell lines in a selective manner, by activating the intrinsic pathway. Since it is a highly hydrophobic compound, it may require a carrier protein for its trafficking to intracellular targets like mitochondria. We studied the role of the ubiquitous tocopherol-associated protein-1 (TAP1 or sec14-like 2) in apoptosis induction by alpha-TOS in malignant mesothelioma (MM) cells. Over-expression of TAP1 in MM cells sensitised them to apoptosis by low doses of alpha-TOS which were sub-apoptotic for the parental cells. Apoptosis induced in TAP1-over-expressing cells was mitochondria- and caspase-dependent, as suggested by dissipation of mitochondrial trans-membrane potential and inhibition by zVAD-fmk, respectively. Binding assays showed affinity of alpha-TOS for TAP1. Finally, TAP1 over-expressing cells accumulated alpha-TOS at higher levels compared to their normal counterparts. We suggest that TAP1 may act as an intracellular shuttle for alpha-TOS, promoting apoptosis initiated by this vitamin E analogue, as shown here for MM cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have purified and characterized a 31-kDa protein named mapmodulin that binds to the microtubule-associated proteins (MAPs) MAP2, MAP4, and tau. Mapmodulin binds free MAPs in strong preference to microtubule-associated MAPs, and appears to do so via the MAP’s tubulin-binding domain. Mapmodulin inhibits the initial rate of MAP2 binding to microtubules, a property that may allow mapmodulin to displace MAPs from the path of organelles translocating along microtubules. In support of this possibility, mapmodulin stimulates the microtubule- and dynein-dependent localization of Golgi complexes in semi-intact CHO cells. To our knowledge, mapmodulin represents the first example of a protein that can bind and potentially regulate multiple MAP proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A previously uncharacterized yeast gene (YER016w) that we have named BIM1 (binding to microtubules) was obtained from a two-hybrid screen of a yeast cDNA library using as bait the entire coding sequence of TUB1 (encoding α-tubulin). Deletion of BIM1 results in a strong bilateral karyogamy defect, hypersensitivity to benomyl, and aberrant spindle behavior, all phenotypes associated with mutations affecting microtubules in yeast, and inviability at extreme temperatures (i.e., ≥37°C or ≤14°C). Overexpression of BIM1 in wild-type cells is lethal. A fusion of Bim1p with green fluorescent protein that complements the bim1Δ phenotypes allows visualization in vivo of both intranuclear spindles and extranuclear microtubules in otherwise wild-type cells. A bim1 deletion displays synthetic lethality with deletion alleles of bik1, num1, and bub3 as well as a limited subset of tub1 conditional-lethal alleles. A systematic study of 51 tub1 alleles suggests a correlation between specific failure to interact with Bim1p in the two-hybrid assay and synthetic lethality with the bim1Δ allele. The sequence of BIM1 shows substantial similarity to sequences from organisms across the evolutionary spectrum. One of the human homologues, EB1, has been reported previously as binding APC, itself a microtubule-binding protein and the product of a gene implicated in the etiology of human colon cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported that KIF3A and KIF3B form a heterodimer that functions as a microtubule-based fast anterograde translocator of membranous organelles. We have also shown that this KIF3A/3B forms a complex with other associated polypeptides, named kinesin superfamily-associated protein 3 (KAP3). In the present study, we purified KAP3 protein by immunoprecipitation using anti-KIF3B antibody from mouse testis. Microsequencing was carried out, and we cloned the full-length KAP3 cDNA from a mouse brain cDNA library. Two isoforms of KAP3 exist [KAP3A (793 aa) and KAP3B (772 aa)], generated by alternative splicing in the carboxyl terminus region. Their amino acid sequences have no homology with those of any other known proteins, and prediction of their secondary structure indicated that almost the entire KAP3 molecule is alpha-helical. We produced recombinant KAP3 and KIF3A/3B using a baculovirus-Sf9 expression system. A reconstruction study in Sf9 cells revealed that KAP3 is a globular protein that binds to the tail domain of KIF3A/3B. The immunolocalization pattern of KAP3 was similar to that of KIF3A/3B in nerve cells. In addition, we found that KAP3 does not affect the motor activity of KIF3A/3B. KAP3 was associated with a membrane-bound form of KIF3A/3B in a fractional immunoprecipitation experiment, and since the KIF3 complex was found to bind to membranous organelles in an EM study, KAP3 may regulate membrane binding of the KIF3 complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Saccharomyces cerevisiae strain with a disrupted yeast cadmium resistance factor (YCF1) gene (DTY168) is hypersensitive to cadmium. YCF1 resembles the human multidrug resistance-associated protein MRP (63% amino acid similarity), which confers resistance to various cytotoxic drugs by lowering the intracellular drug concentration. Whereas the mechanism of action of YCF1 is not known, MRP was recently found to transport glutathione S-conjugates across membranes. Here we show that expression of the human MRP cDNA in yeast mutant DTY168 cells restores cadmium resistance to the wild-type level. Transport of S-(2,4-dinitrobenzene)-glutathione into isolated yeast microsomal vesicles is strongly reduced in the DTY168 mutant and this transport is restored to wild-type level in mutant cells expressing MRP cDNA. We find in cell fractionation experiments that YCF1 is mainly localized in the vacuolar membrane in yeast, whereas MRP is associated both with the vacuolar membrane and with other internal membranes in the transformed yeast cells. Our results indicate that yeast YCF1 is a glutathione S-conjugate pump, like MRP, and they raise the possibility that the cadmium resistance in yeast involves cotransport of cadmium with glutathione derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nerve cells contain abundant subpopulations of cold-stable microtubules. We have previously isolated a calmodulin-regulated brain protein, STOP (stable tubule-only polypeptide), which reconstitutes microtubule cold stability when added to cold-labile microtubules in vitro. We have now cloned cDNA encoding STOP. We find that STOP is a 100.5-kDa protein with no homology to known proteins. The primary structure of STOP includes two distinct domains of repeated motifs. The central region of STOP contains 5 tandem repeats of 46 amino acids, 4 with 98% homology to the consensus sequence. The STOP C terminus contains 28 imperfect repeats of an 11-amino acid motif. STOP also contains a putative SH3-binding motif close to its N terminus. In vitro translated STOP binds to both microtubules and Ca2+-calmodulin. When STOP cDNA is expressed in cells that lack cold-stable microtubules, STOP associates with microtubules at 37 degrees C, and stabilizes microtubule networks, inducing cold stability, nocodazole resistance, and tubulin detyrosination on microtubules in transfected cells. We conclude that STOP must play an important role in the generation of microtubule cold stability and in the control of microtubule dynamics in brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified and further characterized a Caenorhabditis elegans gene, CEZF, that encodes a protein with substantial homology to the zinc finger and leucine zipper motifs of the human gene products AF10, MLLT6, and BR140. The first part of the zinc finger region of CEZF has strong similarity to the corresponding regions of AF10 (66%) and MLLT6 (64%) at the cDNA level. As this region is structurally different from previously described zinc finger motifs, sequence homology searches were done. Twenty-five other proteins with a similar motif were identified. Because the functional domain of this motif is potentially disrupted in leukemia-associated chromosomal translocations, we propose the name of leukemia-associated protein (LAP) finger. On the basis of these comparisons, the LAP domain consensus sequence is Cys1-Xaa1-2-Cys2-Xaa9-21-Cys3-Xaa2-4 -Cys4-Xaa4-5-His5-Xaa2-Cys6-Xaa12-46 - Cys7-Xaa2-Cys8, where subscripted numbers represent the number of amino acid residues. We review the evidence that this motif binds zinc, is the important DNA-binding domain in this group of regulatory proteins, and may be involved in leukemogenesis.