990 resultados para microscopic structure of plant organs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical–basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical–basal position or the identity of the induced structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SQD1 enzyme is believed to be involved in the biosynthesis of the sulfoquinovosyl headgroup of plant sulfolipids, catalyzing the transfer of SO3− to UDP-glucose. We have determined the structure of the complex of SQD1 from Arabidopsis thaliana with NAD+ and the putative substrate UDP-glucose at 1.6-Å resolution. Both bound ligands are completely buried within the binding cleft, along with an internal solvent cavity which is the likely binding site for the, as yet, unidentified sulfur-donor substrate. SQD1 is a member of the short-chain dehydrogenase/reductase (SDR) family of enzymes, and its structure shows a conservation of the SDR catalytic residues. Among several highly conserved catalytic residues, Thr-145 forms unusually short hydrogen bonds with both susceptible hydroxyls of UDP-glucose. A His side chain may also be catalytically important in the sulfonation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phototropin, a major blue-light receptor for phototropism in seed plants, exhibits blue-light-dependent autophosphorylation and contains two light, oxygen, or voltage (LOV) domains and a serine/threonine kinase domain. The LOV domains share homology with the PER-ARNT-SIM (PAS) superfamily, a diverse group of sensor proteins. Each LOV domain noncovalently binds a single FMN molecule and exhibits reversible photochemistry in vitro when expressed separately or in tandem. We have determined the crystal structure of the LOV2 domain from the phototropin segment of the chimeric fern photoreceptor phy3 to 2.7-Å resolution. The structure constitutes an FMN-binding fold that reveals how the flavin cofactor is embedded in the protein. The single LOV2 cysteine residue is located 4.2 Å from flavin atom C(4a), consistent with a model in which absorption of blue light induces formation of a covalent cysteinyl-C(4a) adduct. Residues that interact with FMN in the phototropin segment of the chimeric fern photoreceptor (phy3) LOV2 are conserved in LOV domains from phototropin of other plant species and from three proteins involved in the regulation of circadian rhythms in Arabidopsis and Neurospora. This conservation suggests that these domains exhibit the same overall fold and share a common mechanism for flavin binding and light-induced signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and function of Erwinia chrysanthemi pectate lysase C, a plant virulence factor, is reviewed to illustrate one mechanism of pathogenesis at the molecular level. Current investigative topics are discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elongated particles of simple RNA viruses of plants are composed of an RNA molecule coated with numerous identical capsid protein subunits to form a regular helical structure, of which tobacco mosaic virus is the archetype. Filamentous particles of the closterovirus beet yellow virus (BYV) reportedly contain approximately 4000 identical 22-kDa (p22) capsid protein subunits. The BYV genome encodes a 24-kDa protein (p24) that is structurally related to the p22. We searched for the p24 in BYV particles by using immunoelectron microscopy with specific antibodies against the recombinant p24 protein and its N-terminal peptide. A 75-nm segment at one end of the 1370-nm filamentous viral particle was found to be consistently labeled with both types of antibodies, thus indicating that p24 is indeed the second capsid protein and that the closterovirus particle, unlike those of other plant viruses with helical symmetry, has a "rattlesnake" rather than uniform structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caption title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of a novel plant defensin isolated from the flowers of Petunia hybrida has been determined by H-1 NMR spectroscopy. P. hybrida defensin 1 (PhD1) is a basic, cysteine-rich, antifungal protein of 47 residues and is the first example of a new subclass of plant defensins with five disulfide bonds whose structure has been determined. PhD1 has the fold of the cysteine-stabilized alphabeta motif, consisting of an alpha-helix and a triple-stranded antiparallel beta-sheet, except that it contains a fifth disulfide bond from the first loop to the alpha-helix. The additional disulfide bond is accommodated in PhD1 without any alteration of its tertiary structure with respect to other plant defensins. Comparison of its structure with those of classic, four-disulfide defensins has allowed us to identify a previously unrecognized hydrogen bond network that is integral to structure stabilization in the family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most anatomical studies developed with mammals, the tongue is described as highly differentiated among different species. However, studies on the tongue of aquatic mammals are still limited as compared to those on terrestrial mammals. The aim of this study was to describe the tongue morphology of the Franciscana dolphin (Pontoporia blainvillei) using macroscopic observations, light, and scanning electron microscopy. Microscopically, the dorsal surface was covered by a keratinized stratified epithelium. Salivary gland acini were found on the middle and caudal third of the tongue. The dorsal surface was totally covered by filiform papillae with a connective tissue core and a connective tissue structure round in shape in the middle and caudal regions. Microsc. Res. Tech. 75:737742, 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study cell wall properties; moisture distribution, stiffness, thickness and cell dimension have been taken into consideration. Cell wall stiffness dependent on complex combination of plant cell microstructures, composition and water holding capacity of the cell. In this work, some preliminary steps taken by investing cell wall properties of apple in order to predict change of porosity and shrinkage during drying. Two different types of apple cell wall characteristic were investigated to correlate with porosity and shrinkage after convective drying. A scanning electron microscope (SEM), 2N Intron, a pyncometer and image J software were used in order to measure and analyze cell characteristics, water dynamics, porosity and shrinkage. Cell stiffness of red delicious apple was found higher than granny smith apples. A significant relationship has found between cell wall characteristics and both heat and mass transfer. Consequently, evolution of porosity and shrinkage noticeably influenced during convective drying by the nature of cell wall. This study has brought better understanding of porosity and shrinkage of dried food stuff in microscopic (cell) level and would provide better insight to attain energy effective drying process and quality food stuff.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microscopic changes occur in plant food materials during drying significantly influence the macroscopic properties and quality factors of the dried food materials. It is very critical to study microstructure to understand the underlying cellular mechanisms to improve performance of the food drying techniques. However, there is very limited research conducted on such microstructural changes of plant food material during drying. In this work, Gala apple parenchyma tissue samples were studied using a scanning electron microscope for gradual microstructural changes as affected by temperature, time and moisture content during hot air drying at two drying temperatures: 57 ℃ and 70 ℃. For fresh samples, the average cellular parameter values were; cell area: 20000 μm2, ferret diameter: 160 μm, perimeter: 600 μm, roundness: 0.76, elongation: 1.45 and compactness: 0.84. During drying, a higher degree of cell shrinkage was observed with cell wall warping and increase in intercellular space. However, no significant cell wall breakage was observed. The overall reduction of cell area, ferret diameter and perimeter were about 60%, 40% and 30%. The cell roundness and elongation showed overall increments of about 5% and the compactness remained unchanged. Throughout the drying cycle, cellular deformations were mainly influenced by the moisture content. During the initial and intermediate stages of drying, cellular deformations were also positively influenced by the drying temperature and the effect was reversed at the final stages of drying which provides clues for case hardening of the material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Realistic plant models are important for leaf area and plant volume estimation, reconstruction of growth canopies, structure generation of the plant, reconstruction of leaf surfaces and agrichemical spray droplet modelling. This article investigates several different scanning devices for obtaining a three dimensional digitisation of plant leaves with a point cloud resolution of 200-500μm. The devices tested were a Roland mdx-20, Microsoft Kinect, Roland lpx-250, Picoscan and Artec S. The applicability of each of these devices for scanning plant leaves is discussed. The most suitable tested digitisation device for scanning plant leaves is the Artec S scanner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Small RNA sequencing is commonly used to identify novel miRNAs and to determine their expression levels in plants. There are several miRNA identification tools for animals such as miRDeep, miRDeep2 and miRDeep*. miRDeep-P was developed to identify plant miRNA using miRDeep’s probabilistic model of miRNA biogenesis, but it depends on several third party tools and lacks a user-friendly interface. The objective of our miRPlant program is to predict novel plant miRNA, while providing a user-friendly interface with improved accuracy of prediction. Result We have developed a user-friendly plant miRNA prediction tool called miRPlant. We show using 16 plant miRNA datasets from four different plant species that miRPlant has at least a 10% improvement in accuracy compared to miRDeep-P, which is the most popular plant miRNA prediction tool. Furthermore, miRPlant uses a Graphical User Interface for data input and output, and identified miRNA are shown with all RNAseq reads in a hairpin diagram. Conclusions We have developed miRPlant which extends miRDeep* to various plant species by adopting suitable strategies to identify hairpin excision regions and hairpin structure filtering for plants. miRPlant does not require any third party tools such as mapping or RNA secondary structure prediction tools. miRPlant is also the first plant miRNA prediction tool that dynamically plots miRNA hairpin structure with small reads for identified novel miRNAs. This feature will enable biologists to visualize novel pre-miRNA structure and the location of small RNA reads relative to the hairpin. Moreover, miRPlant can be easily used by biologists with limited bioinformatics skills.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rhabdoviridae, whose members collectively infect invertebrates, animals, and plants, form a large family that has important consequences for human health, agriculture, and wildlife ecology. Plant rhabdoviruses can be separated into the genera Cytorhabdovirus and Nucleorhabdovirus, based on their sites of replication and morphogenesis. This review presents a general overviewof classical and contemporary findings about rhabdovirus ecology, pathology, vector relations, and taxonomy. The genome organization and structure of several recently sequenced nucleorhabdoviruses and cytorhabdoviruses is integrated with new cell biology findings to provide a model for the replication of the two genera. A prospectus outlines the exciting opportunities for future research that will contribute to a more detailed understanding of the biology, biochemistry, replication and host interactions of the plant rhabdoviruses.