53 resultados para microdomain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of new and newly improved methods for predicting protein structure developed by the Jones–University College London group were used to make predictions for the CASP6 experiment. Structures were predicted with a combination of fold recognition methods (mGenTHREADER, nFOLD, and THREADER) and a substantially enhanced version of FRAGFOLD, our fragment assembly method. Attempts at automatic domain parsing were made using DomPred and DomSSEA, which are based on a secondary structure parsing algorithm and additionally for DomPred, a simple local sequence alignment scoring function. Disorder prediction was carried out using a new SVM-based version of DISOPRED. Attempts were also made at domain docking and “microdomain” folding in order to build complete chain models for some targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the microvillar microdomain of the kidney brush border, sodium hydrogen exchanger type 3 (NHE3) exists in physical complexes with the serine protease dipeptidyl peptidase IV (DPPIV). The purpose of this study was to explore the functional relationship between NHE3 and DPPIV in the intact proximal tubule in vivo. To this end, male Wistar rats were treated with an injection of the reversible DPPIV inhibitor Lys [Z(NO(2))]-pyrrolidide (I40; 60 mg center dot kg(-1)center dot day(-1) ip) for 7 days. Rats injected with equal amounts of the noninhibitory compound Lys[ Z(NO(2))]-OH served as controls. Na(+) -H(+) exchange activity in isolated microvillar membrane vesicles was 45 +/- 5% decreased in rats treated with I40. Membrane fractionation studies using isopycnic centrifugation revealed that I40 provoked redistribution of NHE3 along with a small fraction of DPPIV from the apical enriched microvillar membranes to the intermicrovillar microdomain of the brush border. I40 significantly increased urine output ( 67 +/- 9%; P < 0.01), fractional sodium excretion ( 63 +/- 7%; P < 0.01), as well as lithium clearance ( 81 +/- 9%; P < 0.01), an index of end-proximal tubule delivery. Although not significant, a tendency toward decreased blood pressure and plasma pH/HCO(3)(-) was noted in I40-treated rats. These findings indicate that inhibition of DPPIV catalytic activity is associated with inhibition of NHE3-mediated NaHCO(3) reabsorption in rat renal proximal tubule. Inhibition of apical Na(+) -H(+) exchange is due to reduced abundance of NHE3 protein in the microvillar microdomain of the kidney brush border. Moreover, this study demonstrates a physiologically significant interaction between NHE3 and DPPIV in the intact proximal tubule in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery of the Ca(2+) spark as an elementary event of cellular Ca(2+) signaling almost 15 years ago, the family of newly described Ca(2+) signal entities has been ever growing. While scientists working in Ca(2+) signaling may have maintained an overview over the specifics of this nomenclature, those outside the field often make the complaint that they feel hopelessly lost. With the present review we collect and summarize systematic information on the many Ca(2+) signaling events described in a variety of tissues and cells, and we emphasize why and how each of them has its own importance. Most of these signals are taking place in the cytosol of the respective cells, but several events have been recorded from intracellular organelles as well, where they may serve their own specific functions. Finally, we also try to convey an integrated view as to why cellular microdomain signaling is of fundamental biological importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Neutrophils polarize and migrate in response to chemokines. Different types of membrane microdomains (rafts) have been postulated to be present in rear and front of polarized leukocytes and disruption of rafts by cholesterol sequestration prevents leukocyte polarization. Reggie/flotillin-1 and -2 are two highly homologous proteins that are ubiquitously enriched in detergent resistant membranes and are thought to shape membrane microdomains by forming homo- and hetero-oligomers. It was the goal of this study to investigate dynamic membrane microdomain reorganization during neutrophil activation. METHODOLOGY/PRINCIPAL FINDINGS: We show now, using immunofluorescence staining and co-immunoprecipitation, that endogenous flotillin-1 and -2 colocalize and associate in resting spherical and polarized primary neutrophils. Flotillins redistribute very early after chemoattractant stimulation, and form distinct caps in more than 90% of the neutrophils. At later time points flotillins accumulate in the uropod of polarized cells. Chemotactic peptide-induced redistribution and capping of flotillins requires integrity and dynamics of the actin cytoskeleton, but does not involve Rho-kinase dependent signaling related to formation of the uropod. Both flotillin isoforms are involved in the formation of this membrane domain, as uropod location of exogenously expressed flotillins is dramatically enhanced by co-overexpression of tagged flotillin-1 and -2 in differentiated HL-60 cells as compared to cells expressing only one tagged isoform. Flotillin-1 and -2 associate with P-selectin glycoprotein ligand 1 (PSGL-1) in resting and in stimulated neutrophils as shown by colocalization and co-immunoprecipitation. Neutrophils isolated from PSGL-1-deficient mice exhibit flotillin caps to the same extent as cells isolated from wild type animals, implying that PSGL-1 is not required for the formation of the flotillin caps. Finally we show that stimulus-dependent redistribution of other uropod-located proteins, CD43 and ezrin/radixin/moesin, occurs much slower than that of flotillins and PSGL-1. CONCLUSIONS/SIGNIFICANCE: These results suggest that flotillin-rich actin-dependent membrane microdomains are importantly involved in neutrophil uropod formation and/or stabilization and organize uropod localization of PSGL-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) is a highly specialized structural and functional component of the central nervous system that separates the circulating blood from the brain and spinal cord parenchyma. Brain endothelial cells (BECs) that primarily constitute the BBB are tightly interconnected by multiprotein complexes, the adherens junctions and the tight junctions, thereby creating a highly restrictive cellular barrier. Lipid-enriched membrane microdomain compartmentalization is an inherent property of BECs and allows for the apicobasal polarity of brain endothelium, temporal and spatial coordination of cell signaling events, and actin remodeling. In this manuscript, we review the role of membrane microdomains, in particular lipid rafts, in the BBB under physiological conditions and during leukocyte transmigration/diapedesis. Furthermore, we propose a classification of endothelial membrane microdomains based on their function, or at least on the function ascribed to the molecules included in such heterogeneous rafts: (1) rafts associated with interendothelial junctions and adhesion of BECs to basal lamina (scaffolding rafts); (2) rafts involved in immune cell adhesion and migration across brain endothelium (adhesion rafts); (3) rafts associated with transendothelial transport of nutrients and ions (transporter rafts).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The morbillivirus cell entry machinery consists of a fusion (F) protein trimer that refolds to mediate membrane fusion following receptor-induced conformational changes in its binding partner, the tetrameric attachment (H) protein. To identify molecular determinants that control F refolding, we generated F chimeras between measles virus (MeV) and canine distemper virus (CDV). We located a central pocket in the globular head domain of CDV F that regulates the stability of the metastable, prefusion conformational state of the F trimer. Most mutations introduced into this "pocket'" appeared to mediate a destabilizing effect, a phenotype associated with enhanced membrane fusion activity. Strikingly, under specific triggering conditions (i.e., variation of receptor type and H protein origin), some F mutants also exhibited resistance to a potent morbillivirus entry inhibitor, which is known to block F triggering by enhancing the stability of prefusion F trimers. Our data reveal that the molecular nature of the F stimulus and the intrinsic stability of metastable prefusion F both regulate the efficiency of F refolding and escape from small-molecule refolding blockers. IMPORTANCE: With the aim to better characterize the thermodynamic basis of morbillivirus membrane fusion for cell entry and spread, we report here that the activation energy barrier of prefusion F trimers together with the molecular nature of the triggering "stimulus" (attachment protein and receptor types) define a "triggering range," which governs the initiation of the membrane fusion process. A central "pocket" microdomain in the globular F head contributes substantially to the regulation of the conformational stability of the prefusion complexes. The triggering range also defines the mechanism of viral escape from entry inhibitors and describes how the cellular environment can affect membrane fusion efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously identified phosphatidylinositol-4-phosphate 5-kinase type I (PIPKI)γ90 as a T cell uropod component. However, the molecular determinants and functional consequences of its localization remain unknown. In this report, we seek to better understand the mechanisms involved in PIPKIγ90 uropod targeting and the role that PIPKIγ90 plays in T cell uropod formation. During T cell activation, PIPKIγ90 cocaps with the membrane microdomain-associated proteins flotillin-1 and -2 and accumulates in the uropod. We report that the C-terminal 26 amino acid extension of PIPKIγ90 is required for its localization to the uropod. We further use T cells from PIPKIγ90(-/-) mice and human T cells expressing a kinase-dead PIPKIγ90 mutant to examine the role of PIPKIγ90 in a T cell uropod formation. We find that PIPKIγ90 deficient T cells have elongated uropods on ICAM-1. Moreover, in human T cells overexpression of PIPKIγ87, a naturally occurring isoform lacking the last 26 amino acids, suppresses uropod formation and impairs capping of uropod proteins such as flotillins. Transfection of human T cells with a dominant-negative mutant of flotillin-2 in turn attenuates capping of PIPKIγ90. Our data contribute to the understanding of the molecular mechanisms that regulate T cell uropod formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uridine-rich small nuclear RNAs (U snRNAs) play essential roles in eukaryotic gene expression by facilitating the removal of introns from mRNA precursors and the processing of the replication-dependent histone pre-mRNAs. Formation of the 3’ end of these snRNAs is carried out by a poorly characterized, twelve-membered protein complex named Integrator Complex. In the effort to understand Integrator Complex function in the formation of the snRNA 3’ end, we performed a functional RNAi screen in Drosophila S2 cells to identify protein factors required for snRNA 3’ end formation. This screen was conducted by using a fluorescence-based reporter that elicits GFP expression in response to a deficiency in snRNA processing. Besides scoring the known Integrator subunits, we identified Asunder and CG4785 as additional core members of the Integrator Complex. Additionally, we also found a conserved requirement for Cyclin C and Cdk8 in both fly and human snRNA 3’ end processing. We have further demonstrated that the kinase activity of Cdk8 is critical for snRNA 3’ end processing and is likely to function independent of its well-documented function within the Mediator Cdk8 module. Taken together, this work functionally defines the Drosophila Integrator Complex and demonstrates a novel function for Cyclin C/Cdk8 in snRNA 3’ end formation. This thesis work has also characterized an important functional interaction mediated by a microdomain within Integrator subunit 12 (IntS12) and IntS1 that is required for the activity of the Integrator Complex in processing the snRNA 3’ end. Through the development of a reporter-based functional RNAi-rescue assay in Drosophila S2 cells, we analyzed domains within IntS12 required for snRNA 3’ end formation. This analysis unexpectedly revealed that an N-terminal 30 amino acid region and not the highly conserved central PHD finger domain, is required for snRNA 3’ end cleavage. The IntS12 microdomain (1-45) functions autonomously, and is sufficient to interact and stabilize the putative scaffold protein IntS1. Our findings provide more details of the Integrator Complex for understanding the molecular mechanism of snRNA 3’ end processing. Moreover, these results lay the foundation for future studies of the complex through the identification of a novel functional domain within one subunit and the identification of additional subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Select lipid-anchored proteins such as glycosylphosphatidylinositol (GPI)-anchored proteins and nonreceptor tyrosine kinases may preferentially partition into sphingomyelin-rich and cholesterol-rich plasmalemmal microdomains, thereby acquiring resistance to detergent extraction. Two such domains, caveolae and lipid rafts, are morphologically and biochemically distinct, contain many signaling molecules, and may function in compartmentalizing cell surface signaling. Subfractionation and confocal immunofluorescence microscopy reveal that, in lung tissue and in cultured endothelial and epithelial cells, heterotrimeric G proteins (Gi, Gq, Gs, and Gβγ) target discrete cell surface microdomains. Gq specifically concentrates in caveolae, whereas Gi and Gs concentrate much more in lipid rafts marked by GPI-anchored proteins (5′ nucleotidase and folate receptor). Gq, apparently without Gβγ subunits, stably associates with plasmalemmal and cytosolic caveolin. Gi and Gs interact with Gβγ subunits but not caveolin. Gi and Gs, unlike Gq, readily move out of caveolae. Thus, caveolin may function as a scaffold to trap, concentrate, and stabilize Gq preferentially within caveolae over lipid rafts. In N2a cells lacking caveolae and caveolin, Gq, Gi, and Gs all concentrate in lipid rafts as a complex with Gβγ. Without effective physiological interaction with caveolin, G proteins tend by default to segregate in lipid rafts. The ramifications of the segregated microdomain distribution and the Gq-caveolin complex without Gβγ for trafficking, signaling, and mechanotransduction are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sphingomyelin- and cholesterol-enriched microdomains can be isolated as detergent-resistant membranes from total cell extracts (total-DRM). It is generally believed that this total-DRM represents microdomains of the plasma membrane. Here we describe the purification and detailed characterization of microdomains from Golgi membranes. These Golgi-derived detergent-insoluble complexes (GICs) have a low buoyant density and are highly enriched in lipids, containing 25% of total Golgi phospholipids including 67% of Golgi-derived sphingomyelin, and 43% of Golgi-derived cholesterol. In contrast to total-DRM, GICs contain only 10 major proteins, present in nearly stoichiometric amounts, including the α- and β-subunits of heterotrimeric G proteins, flotillin-1, caveolin, and subunits of the vacuolar ATPase. Morphological data show a brefeldin A-sensitive and temperature-sensitive localization to the Golgi complex. Strikingly, the stability of GICs does not depend on its membrane environment, because, after addition of brefeldin A to cells, GICs can be isolated from a fused Golgi-endoplasmic reticulum organelle. This indicates that GIC microdomains are not in a dynamic equilibrium with neighboring membrane proteins and lipids. After disruption of the microdomains by cholesterol extraction with cyclodextrin, a subcomplex of several GIC proteins including the B-subunit of the vacuolar ATPase, flotillin-1, caveolin, and p17 could still be isolated by immunoprecipitation. This indicates that several of the identified GIC proteins localize to the same microdomains and that the microdomain scaffold is not required for protein interactions between these GIC proteins but instead might modulate their affinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

VIP21/caveolin is localized to both caveolae and apical transport vesicles and presumably cycles between the cell surface and the Golgi complex. We have studied the lipid interactions of this protein by reconstituting Escherichia coli-expressed VIP21/caveolin into liposomes. Surprisingly, the protein reconstituted only with cholesterol-containing lipid mixtures. We demonstrated that the protein binds at least 1 mol of cholesterol per mole of protein and that this binding promotes formation of protein oligomers. These findings suggest that VIP21/caveolin, through its cholesterol-binding properties, serves a specific function in microdomain formation during membrane trafficking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been suggested that transepithelial gradients of short-chain fatty acids (SCFAs; the major anions in the colonic lumen) generate pH gradients across the colonic epithelium. Quantitative confocal microscopy was used to study extracellular pH in mouse distal colon with intact epithelial architecture, by superfusing tissue with carboxy SNARF-1 (a pH-sensitive fluorescent dye). Results demonstrate extracellular pH regulation in two separate microdomains surrounding colonic crypts: the crypt lumen and the subepithelial tissue adjacent to crypt colonocytes. Apical superfusion with (i) a poorly metabolized SCFA (isobutyrate), (ii) an avidly metabolized SCFA (n-butyrate), or (iii) a physiologic mixture of acetate/propionate/n-butyrate produced similar results: alkalinization of the crypt lumen and acidification of subepithelial tissue. Effects were (i) dependent on the presence and orientation of a transepithelial SCFA gradient, (ii) not observed with gluconate substitution, and (iii) required activation of sustained vectorial acid/base transport by SCFAs. Results suggest that the crypt lumen functions as a pH microdomain due to slow mixing with bulk superfusates and that crypts contribute significant buffering capacity to the lumen. In conclusion, physiologic SCFA gradients cause polarized extracellular pH regulation because epithelial architecture and vectorial transport synergize to establish regulated microenvironments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doped ceria (CeO2,) compounds are fluorite type oxides, which show oxide ionic conductivity higher than yttria stabilized zirconia (YSZ), in oxidizing atmospheres. As a consequence of this, considerable interest has been shown in application of these materials for 'low (500-650 degreesC)' or 'intermediate (650-800 degreesC)' temperature operation, solid oxide fuel cells (SOFCs). In this study, the authors prepared two kinds of nanosize Sm-doped CeO2 particles with different morphologies: one type was round and the other was elongated. Processing these powders with different morphology produced dense materials with very different ionic conducting properties and different nanoscale microstructures. Since both particles are very fine and well dispersed, sintered bodies with high density (relative density >95% of theoretical) could be prepared using both types of powder particles. The electrical conductivity of sintered bodies prepared from these powders with different starting morphologies was very different. Materials prepared from particles having a round shape were much higher than those produced using powders with an elongated morphology. Measured activation energies of the corresponding sintered samples showed a similar trend; round particles (60 kJ/mol), elongated particles (74 kJ/mol). While X-ray diffraction (XRD) profiles of these sintered materials were identical, diffuse scatter was observed in the back.-round of selected area electron diffraction pattern recorded from both sintered bodies. This indicated an underlying structure that appeared to have been influenced by the processing technology. Detailed observation using high-resolution transmission electron microscopy (HR-TEM) revealed that the size of microdomain with ordering of cations in the sintered body made from round shape particles was much smaller than that of the sintered body made from elongated particles. Accordingly, it is concluded that the morphology of doped CeO2 powders strongly influenced the microdomain size and electrolytic properties in the doped CeO2 sintered body. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plasma membrane is a complex, dynamic structure that provides platforms for the assembly of many signal transduction pathways. These platforms have the capacity to impose an additional level of regulation on cell signalling networks. In this review, we will consider specifically how Ras proteins interact with the plasma membrane. The focus will be on recent studies that provide novel spatial and dynamic insights into the micro-environments that different Ras proteins utilize for signal transduction. We will correlate these recent studies suggesting Ras proteins might operate within a heterogeneous plasma membrane with earlier biochemical work on Ras signal transduction.