963 resultados para microbial mats
Resumo:
Håkon Mosby Mud Volcano (HMMV, SW Barents Sea slope, 1280 m) is one of the numerous cold methane-venting seeps existing along the continental margins. Analyses of video-guided core samples revealed extreme differences in the diversity and density of the metazoan meiobenthic communities associated with the different sub-habitats (centre, microbial mats, Pogonophora field, outer rim) of this mud volcano. Diversity was lowest in the sulphidic, microbial mat sediments that supported the highest standing stock, with unusually high densities (11000 ind./10 cm**2) of 1 nematode species related to Geomonhystera disjuncta. Stable carbon isotope analyses revealed that this nematode species was thriving on chemosynthetically derived food sources in these sediments. Ovoviviparous reproduction has been identified as an important adaptation of parents securing the survival and development of their brood in this toxic environment. The proliferation of this single species in exclusive association with free-living, sulphide-oxidising bacteria (Beggiatoa) indicates that its dominance is strongly related to trophic specialisation, evidently uncommon among the meiofauna. This chemoautotrophic association was replaced by copepods in the bare, sulphide-free sediments of the volcano's centre, dominated by aerobic methane oxidation as the chemosynthetic process. Copepods and nauplii reached maximum densities and dominance in the volcano's centre (500 ind./10 cm**2). Their strongly depleted carbon isotope signatures indicated a trophic link with methane-derived carbon. This proliferation of only selected meiobenthic species supported by chemosynthetically derived carbon suggests that, in addition to the sediment geochemistry, the associated reduced meiobenthic diversity may equally be related to the trophic resource specificity in HMMV sub-habitats.
Resumo:
Hydrothermal solutions were examined in a circulation system that started to develop after the 1991 volcanic eruption in the axial segment of the EPR between 9°45'N and 9°52'N. Within twelve years after this eruption, diffusion outflow of hot fluid from fractures in basaltic lavas gave way to focused seeps of hot solutions through channels of hydrothermal sulfide edifices. An example of the field Q demonstrates that from 1991 to 2003 H2S concentrations decreased from 86 to 1 mM/kg, and the Fe/H2S ratio simultaneously increased by factor 1.7. This fact can explain disappearance of microbial mats that were widespread within the fields before 1991. S isotopic composition of H2S does not depend on H2S concentration. This fact testifies rapid evolution of the hydrothermal system in the early years of its evolution. Carbon in CH4 from hot fluid sampled in 2003 is richer in 12C isotope than carbon in fluid from the hydrothermal field at 21°N EPR. It suggests that methane comes to the Q field from more than one source. Composition of particulate matter in hydrothermal solutions indicates that it was contributed by biological material. Experimental solutions with labeled substrates (t<70°C) show evidence of active processes of methane oxidation and sulfate reduction. Our results indicate that, during 12-year evolution of the hydrothermal system, composition of its solutions evolved and approached compositions of solutions in mature hydrothermal systems of the EPR.
Resumo:
Bathymetry based on data recorded during POS317-3 between 19.09.2004 and 13.10.2004 in the Black Sea. This cruise concentrated on bathymetric mapping and mapping of gas seeps by hydro-acoustic detection of gas flares in the water column and the quantification of microbial turnover of gassy sediments and microbial mats. The major objective during POS317-3 was the characterization and identification of microorganisms involved in the anaerobic methane oxidation in the sediment and in microbial mats. As part of these investigations characteristic organic molecules will be identified, which can be used as biomarkers for anaerobic methane oxidizing microorganisms.
Resumo:
Authigenic carbonates associated with cold seeps provide valuable archives of changes in the long-term seepage activity. To investigate the role of shallow-buried hydrates on the seepage strength and fluid composition we analysed methane-derived carbonate precipitates from a high-flux hydrocarbon seepage area ("Batumi seep area") located on the south-eastern Black Sea slope in ca. 850 m. In a novel approach, we combined computerized X-ray tomography (CT) with mineralogical and isotope geochemical methods to get additional insights into the three-dimensional internal structure of the carbonate build-ups. X-ray diffractometry revealed the presence of two different authigenic carbonate phases, i.e. pure aragonitic rims associated with vital microbial mats and high-Mg calcite cementing the hemipelagic sediment. As indicated by the CT images, the initial sediment has been strongly deformed, first plastic then brittle, leading to brecciation of the progressively cemented sediment. The aragonitic rims on the other hand, represent a presumably recent carbonate growth phase since they cover the already deformed sediment. The stable oxygen isotope signature indicates that the high-Mg calcite cement incorporated pore water mixed with substantial hydrate water amounts. This points at a dominant role of high gas/fluid flux from decomposing gas hydrates leading to the deformation and cementation of the overlying sediment. In contrast, the aragonitic rims do not show an influence of 18O-enriched hydrate water. The differences in d18O between the presumably recent aragonite precipitates and the older high-Mg cements suggest that periods of hydrate dissociation and vigorous fluid discharge alternated with times of hydrate stability and moderate fluid flow. These results indicate that shallow-buried gas hydrates are prone to episodic decomposition with associated vigorous fluid flow. This might have a profound impact on the seafloor morphology resulting e.g. in the formation of carbonate pavements and pockmark-like structures but might also affect the local carbon cycle.
Resumo:
An extensive submarine cold-seep area was discovered on the northern shelf of South Georgia during R/V Polarstern cruise ANT-XXIX/4 in spring 2013. Hydroacoustic surveys documented the presence of 133 gas bubble emissions, which were restricted to glacially-formed fjords and troughs. Video-based sea floor observations confirmed the sea floor origin of the gas emissions and spatially related microbial mats. Effective methane transport from these emissions into the hydrosphere was proven by relative enrichments of dissolved methane in near-bottom waters. Stable carbon isotopic signatures pointed to a predominant microbial methane formation, presumably based on high organic matter sedimentation in this region. Although known from many continental margins in the world's oceans, this is the first report of an active area of methane seepage in the Southern Ocean. Our finding of substantial methane emission related to a trough and fjord system, a topographical setting that exists commonly in glacially-affected areas, opens up the possibility that methane seepage is a more widespread phenomenon in polar and sub-polar regions than previously thought.
Mineralogical, geochemical, and lipid biomarker study of cabonate precipitates at station GeoB9908-1
Resumo:
Carbonate precipitates recovered from 2,000 m water depth at the Dolgovskoy Mound (Shatsky Ridge, north eastern Black Sea) were studied using mineralogical, geochemical and lipid biomarker analyses. The carbonates differ in shape from simple pavements to cavernous structures with thick microbial mats attached to their lower side and within cavities. Low d13C values measured on carbonates (-41 to -32 per mill V-PDB) and extracted lipid biomarkers indicate that anaerobic oxidation of methane (AOM) played a crucial role in precipitating these carbonates. The internal structure of the carbonates is dominated by finely laminated coccolith ooze and homogeneous clay layers, both cemented by micritic high-magnesium calcite (HMC), and pure, botryoidal, yellowish low-magnesium calcite (LMC) grown in direct contact to microbial mats. d18O measurements suggest that the authigenic HMC precipitated in equilibrium with the Black Sea bottom water while the yellowish LMC rims have been growing in slightly 18O-depleted interstitial water. Although precipitated under significantly different environmental conditions, especially with respect to methane availability, all analysed carbonate samples show lipid patterns that are typical for ANME-1 dominated AOM consortia, in the case of the HMC samples with significant contributions of allochthonous components of marine and terrestrial origin, reflecting the hemipelagic nature of the primary sediment.
Resumo:
Biogeochemical measurements in sediment cores collected with the submersible JAGO (pusch cores) and a TV-MUC in the Black Sea during MSM15/1, Northwest Crimea (HYPOX Project), at water depths between 152-156 m. A series of microbial mats were sampled on the hypoxic region of the Crimean Shelf. Concentrations of organic carbon (Corg) and nitrogen (N) were measured on finely powdered, freeze-dried subsamples of sediment using a using a Fisons NA-1500 elemental analyzer. For organic carbon determination samples were pre-treated with 12.5% HCl to remove carbonates. Chlorophyll a (chl a), phaeopigments (PHAEO) and chloroplastic pigment equivalents (CPE) was measured according to Schubert et al., (2005) and total hydrolyzable amino acids (THAA) and single amino acid: ASP, GLU, SER, HIS, GLY, THR, ARG, ALA, TYR, MET, VAL, PHE, ILE, LEU, LYS following Dauwe et al., 1998.
Resumo:
Biogeochemical measurements in sediment cores collected with the submersible JAGO (pusch cores) and a TV-MUC in the Black Sea during MSM15/1, Northwest Crimea (HYPOX Project), at water depths between 152-156 m. A series of microbial mats were sampled on the hypoxic region of the Crimean Shelf. Concentrations of organic carbon (Corg) and nitrogen (N) were measured on finely powdered, freeze-dried subsamples of sediment using a using a Fisons NA-1500 elemental analyzer. For organic carbon determination samples were pre-treated with 12.5% HCl to remove carbonates. Chlorophyll a (chl a), phaeopigments (PHAEO) and chloroplastic pigment equivalents (CPE) was measured according to Schubert et al., (2005) and total hydrolyzable amino acids (THAA) and single amino acid: ASP, GLU, SER, HIS, GLY, THR, ARG, ALA, TYR, MET, VAL, PHE, ILE, LEU, LYS following Dauwe et al., 1998.
Resumo:
Biogeochemical measurements in sediment cores collected with the submersible JAGO (pusch cores) and a TV-MUC in the Black Sea during MSM15/1, Northwest Crimea (HYPOX Project), at water depths between 152-156 m. A series of microbial mats were sampled on the hypoxic region of the Crimean Shelf. Concentrations of organic carbon (Corg) and nitrogen (N) were measured on finely powdered, freeze-dried subsamples of sediment using a using a Fisons NA-1500 elemental analyzer. For organic carbon determination samples were pre-treated with 12.5% HCl to remove carbonates. Chlorophyll a (chl a), phaeopigments (PHAEO) and chloroplastic pigment equivalents (CPE) was measured according to Schubert et al., (2005; doi:10.1029/2004GC000837) and total hydrolyzable amino acids (THAA) and single amino acid: ASP, GLU, SER, HIS, GLY, THR, ARG, ALA, TYR, MET, VAL, PHE, ILE, LEU, LYS following Dauwe et al., 1998. High-resolution ex situ sulfide and pH microprofiles, were assessed only for station MSM15/1_492_PUC1. "in mat 1, 2 and 3" refers to 3 different profiles in 3 different spots of the microbial mat, whereas "outside mat", a profile outside the microbial mat.
Resumo:
Hydrocarbon seepage is a widespread process at the continental margins of the Gulf of Mexico. We used a multidisciplinary approach, including multibeam mapping and visual seafloor observations with different underwater vehicles to study the extent and character of complex hydrocarbon seepage in the Bay of Campeche, southern Gulf of Mexico. Our observations showed that seafloor asphalt deposits previously only known from the Chapopote Knoll also occur at numerous other knolls and ridges in water depths from 1230 to 3150 m. In particular the deeper sites (Chapopopte and Mictlan knolls) were characterized by asphalt deposits accompanied by extrusion of liquid oil in form of whips or sheets, and in some places (Tsanyao Yang, Mictlan, and Chapopote knolls) by gas emission and the presence of gas hydrates in addition. Molecular and stable carbon isotopic compositions of gaseous hydrocarbons suggest their primarily thermogenic origin. Relatively fresh asphalt structures were settled by chemosynthetic communities including bacterial mats and vestimentiferan tube worms, whereas older flows appeared largely inert and devoid of corals and anemones at the deep sites. The gas hydrates at Tsanyao Yang and Mictlan Knolls were covered by a 5-to-10 cm-thick reaction zone composed of authigenic carbonates, detritus, and microbial mats, and were densely colonized by 1-2 m-long tube worms, bivalves, snails, and shrimps. This study increased knowledge on the occurrences and dimensions of asphalt fields and associated gas hydrates at the Campeche Knolls. The extent of all discovered seepage structure areas indicates that emission of complex hydrocarbons is a widespread, thus important feature of the southern Gulf of Mexico.
Resumo:
Biogeochemical measurements in sediment cores collected with the submersible JAGO (pusch cores) and a TV-MUC in the Black Sea during MSM15/1, Northwest Crimea (HYPOX Project), at water depths between 152-156 m. A series of microbial mats were sampled on the hypoxic region of the Crimean Shelf. Concentrations of organic carbon (Corg) and nitrogen (N) were measured on finely powdered, freeze-dried subsamples of sediment using a using a Fisons NA-1500 elemental analyzer. For organic carbon determination samples were pre-treated with 12.5% HCl to remove carbonates. Chlorophyll a (chl a), phaeopigments (PHAEO) and chloroplastic pigment equivalents (CPE) was measured according to Schubert et al., (2005) and total hydrolyzable amino acids (THAA) and single amino acid: ASP, GLU, SER, HIS, GLY, THR, ARG, ALA, TYR, MET, VAL, PHE, ILE, LEU, LYS following Dauwe et al., 1998.