332 resultados para micorriza arbuscular
Resumo:
Foram estudados em casa de vegetação alguns parâmetros de crescimento em plantas de quiabo (Abelmoschus esculentus (L.) Moench cv. Piranema) colonizadas por dois grupos de fungos micorrízicos arbusculares, com o objetivo de determinar a influência dos inóculos na nutrição e morfologia radicular do quiabeiro. Um grupo continha apenas esporos de Acaulospora longula (A) enquanto o outro, esporos de oito espécies: Glomus occultum, Glomus aggregatum, Glomus microcarpum, Acaulospora longula, Acaulospora morrowae, Sclerocystis coremioides, Sclerocystis sinuosa, Scutellospora pellucida. As plantas foram submetidas a três níveis de P (0, 10 e 60 kg ha-1 de P2O5) e coletadas em três diferentes idades (22, 32 e 47 dias), com quatro repetições para cada tratamento. Foi determinado o acúmulo de N, P, K, e Mg na raiz e parte aérea, bem como o influxo médio desses elementos e a área radicular. Os resultados indicaram, além da resposta positiva do quiabeiro ao P, uma maior eficiência da inoculação com mistura de espécies apesar de o influxo médio, determinado aos 47 dias, apresentar maiores valores para o tratamento com A. longula.
Resumo:
Visando a avaliar diferentes substratos na formação de mudas de bananeira e seu efeito na resposta da planta à inoculação do fungo micorrízico Gigaspora margarita, foi conduzido um experimento em estufa de aclimatação da Biofábrica CAMPO - CPA/Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia. Foram testados 13 substratos, com e sem inoculação do fungo, em plântulas na fase de aclimatação. A inoculação foi realizada no momento do transplante e, após 55 dias de cultivo, obtiveram-se dados de crescimento, nutrição mineral e colonização micorrízica. O fungo micorrízico arbuscular (FMA) Gigaspora margarita colonizou intensamente e mostrou-se benéfico para o desenvolvimento das mudas de bananeira, sendo o seu efeito modulado pelo substrato de crescimento; o substrato turfa + vermiculita + 5% de esterco destacou-se entre os melhores para a formação de mudas normais e sadias, mas só quando associado à inoculação do FMA; o uso de substrato comercial Rendmax Citrus promoveu o melhor desenvolvimento das mudas, mas inibiu a colonização e o efeito da micorriza; a complementação mineral do Rendmax Citrus não se mostrou necessária para o cultivo de mudas de bananeira; o uso de vermicomposto mostrou-se promissor para a produção de mudas de bananeira, permitindo o efeito da inoculação com FMA.
Resumo:
Os Fungos Micorrízicos Arbusculares (FMAs) desempenham um papel importante na sustentabilidade dos ecossistemas, devido a importância da simbiose que formam com a maioria das plantas. A associação destes fungos com as raízes possibilita uma melhor nutrição das plantas, além de promover o crescimento e a resistência a fatores causadores de estresse. Desta forma, auxiliam no aumento da produtividade das mesmas, e na redução do uso de insumos químicos, como fertilizantes e agrotóxicos, na agricultura. Em função ao caráter de simbiontes obrigatórios, é de grande interesse o desenvolvimento de processos que permitam o isolamento, caracterização, manutenção de isolados e produção de inóculo desses fungos. Assim, com o objetivo de produzir um método de cultivo axênico, e que também possa auxiliar o estudo destes em áreas como a biologia molecular, testou-se protocolos de micropropagação para a produção in vitro de Glomus etunicatum W. N. Becker & Gerd., utilizando-se como hospedeiro raízes de tomateiro, videira e menta. Além destas culturas, que foram propagadas vegetativamente para a manutenção das culturas estoques e enraizadas in vitro com a aplicação exógena do regulador de crescimento ácido indolbutírico (AIB), trabalhou-se também com a cultura da menta, mas devido a problemas que ocorreram durante a etapa de enraizamento, não foi possível efetivar a associação do inóculo Na inoculação de esporos em raízes da videira cultivadas in vitro, não se obteve êxito. Com o cultivo in vitro de raízes de tomateiro foi possível conduzir os trabalhos até a etapa de colonização do FMA. No enraizamento in vitro das três culturas trabalhadas foi avaliado o número e o comprimento médio das raízes cultivadas nos meios de enraizamento nas doses de 0, 1,0 e 2,0 mg.L-1 de AIB. Para o tomateiro e a menta, o número e o comprimento médio de raízes por explante foram significativamente maiores com a dose de 1,0 mg.L-1 de AIB. Entretanto, para a cultura da videira, embora o uso de AIB, em ambas as doses de 1,0 e 2,0 mg.L-1 induziram um maior número de raízes, o comprimento médio de raízes foi maior quando AIB não foi adicionado no meio de enraizamento.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Avaliaram-se os efeitos da micorriza vesicular-arbuscular e das doses de fósforo sobre o crescimento e a absorção de nutrientes em mudas de seringueira, em casa-de-vegetação. Os tratamentos constaram de três doses de fósforo: 0,9; 1,8 e 2,7 g de P2O5/planta, tendo como fonte o superfosfato triplo, e dois tratamentos de inoculação: não-inoculado e inoculado com Gigaspora margarita, ambos em solo não-esterilizado. Os parâmetros analisados foram infecção radicular, altura das plantas, diâmetro do caule, peso da matéria seca da parte aérea, teor foliar e absorção de N, P, K, Ca, Mg, S, B, Fe, Mn e Zn em materiais coletados nove meses após a instalação do experimento. A aplicação da dose de 2,7 g de P2O5/planta favoreceu a infecção radicular e 2,7 g dc P2O5/planta. O fornecimento de B ao solo, na concentração de 1 mg/kg, induziu níveis do toxicidade nas plantas.
Resumo:
Arbuscular mycorrhizal fungi (AMF), which is intrinsically present or may be introduced in soils by inoculation, is an example of natural and renewable resource to increase plant nutrient uptake. This kind of fungi produces structures (hyphae, arbuscles and sometimes vesicles) inside the plant root cortex. This mutualistic relationship promotes plant gains in terms of water and nutrient absorption (mainly phosphorus). Biochar can benefit plant interaction with AMF, however, it can contain potentially toxic compounds such as heavy metals and organic compounds (e.g. dioxins, furans and polycyclic aromatic hydrocarbons), depending on the feedstock and pyrolysis conditions, which may damage organisms. For these reasons, the present work will approach the impacts of biochar application on soil attributes, AMF-plant symbiosis and its responses in plant growth and phosphorus uptake. Eucalyptus biochar produced at high temperatures increases sorghum growth; symbiosis with AMF; and enhances spore germination. Enhanced plant growth in the presence of high temperature biochar and AMF is a response of root branching stimulated by an additive effect between biochar characteristics and root colonization. Biochar obtained at low temperature reduces AMF spore germination; however it does not affect plant growth and symbiosis in soil.
Resumo:
2016
Resumo:
The Fungal Ribosomal Intergenic Spacer Analysis (F-RISA) was used to characterize soil fungal communities from three ecosystems of Araucaria angustifolia from Brazil: a native forest and two replanted forest ecosystems, one of them with a past history of wildfire. The arbuscular mycorrhizal fungi (AMF) infection was evaluated in Araucaria roots of 18-month-old axenic plants previously inoculated with soils collected from those areas in a greenhouse experiment. The principal component analysis of F-RISA profiles showed different soil fungal community between the three studied areas. Sixty three percent of F-RISA fragments amplified in the soil and the substrate samples presented lengths between 500 and 700 bp. The number of Operational Taxonomic Units (OTUs) was 34 for soil and 38 for substrate, however, more fragments were detected in soil (214) than in substrate (163). An in silico F-RISA analysis to compare our data with ITS1-5.8S-ITS2 sequences from NCBI database showed the presence of Ascomycota, Basidiomycota and Glomeromycota among the soil and substrate fungal communities. AMF infection was higher in plants inoculated with soil from the native forest and the replanted forest with wildfire, both presenting similar chemical characteristics but with different disturbance levels. These results indicate that soil chemical composition may influence the soil fungal community structures rather than the anthropogenic or fire disturbances.
Resumo:
The controlled disposal of tannery sludge in agricultural soils is a viable alternative for recycling such waste; however, the impact of this practice on the arbuscular mycorrhizal fungi (AMF) communities is not well understood. We studied the effects of low-chromium tannery sludge amendment in soils on AMF spore density, species richness and diversity, and root colonization levels. Sludge was applied at four doses to an agricultural field in Rolandia, Parana state, Brazil. The sludge was left undisturbed on the soil surface and then the area was harrowed and planted with corn. The soil was sampled at four intervals and corn roots once within a year (2007/2008). AMF spore density was low (1 to 49 spores per 50 cm(3) of soil) and decreased as doses of tannery sludge increased. AMF root colonization was high (64%) and unaffected by tannery sludge. Eighteen AMF species belonging to six genera (Acaulospora, Glomus, Gigaspora, Scutellospora, Paraglomus, and Ambispora) were recorded. At the sludge doses of 9.0 and 22.6 Mg ha(-1), we observed a decrease in AMF species richness and diversity, and changes in their relative frequencies. Hierarchical grouping analysis showed that adding tannery waste to the soil altered AMF spore community in relation to the control, modifying the mycorrhizal status of soil and selectively favoring the sporulation of certain species.
Resumo:
Arbuscular mycorrhizae are symbiotic associations among glomalean fungi and plant roots that often lead to enhanced water and nutrient uptake and plant growth. We describe experiments to test whether inoculum potential of arbuscular mycorrhizal (AM) fungal communities varies spatially within a broadleaf temperate forest, and also whether there is variability in the effectiveness of AM fungal communities in enhancing seedling growth. Inoculum potential of arbuscular mycorrhizal fungi in a temperate broad-leaved forest did not vary significantly among sites. Inoculum potential, measured as the extent to which the roots of red maple seedlings that had been germinated on sterile sand and then transplanted into the forest, were colonized by AM fungi, was similar in floodplain and higher elevation sites. It was as similar under ectomycorrhizal oaks as it was under red maples and other AM tree species. It was also similar among sites with deciduous understory shrubs with arbuscular mycorrhizae (spicebush, Lindera benzoin) and those with evergreen vegetation with ericoid mycorrhizae (mountain laurel, Kalmia latifolia). Where spicebush was the dominant understory shrub, inoculum potential was greater under gaps in the canopy than within the understory. Survivorship of transplanted red maple seedlings varied significantly over sites but was not strongly correlated with measures of inoculum potential. In a greenhouse growth experiment, arbuscular mycorrhizal fungal communities obtained from tree roots from the forest had different effects on plant growth. Seedlings inoculated with roots of red maple had twice the leaf area after 10 wk of growth compared to the AM community obtained from roots of southern red oaks. Thus, although there appears to be little heterogeneity in inoculum potential in the forest, there are differences in the effectiveness of different inocula. These effects have the potential to affect tree species diversity in forests by modifying patterns of seedling recruitment.
Resumo:
The presence of vesicular-arbuscular mycorrhizal (VAM) fungi in long-term cane-growing fields associated with yield decline led to the supposition that VAM fungi may be responsible for the poor yields. A glasshouse trial was established to test the effectiveness of a species of VAM fungi, Glomus clarum, extracted from one of these North Queensland fields on the growth of sugarcane (Saccharum interspecific hybrid), maize (Zea mays), and soybean (Glycine max) for 6 phosphorus (P) rates (0, 2.7, 8.2, 25, 74, 222 mg/kg). For maize and soybean plants that received VAM (+ VAM), root colonisation was associated with enhanced P uptake, improved dry weight (DW) production, and higher index tissue-P concentrations than those without VAM (-VAM). By comparing DW responses of maize and soybean for different P rates, savings in fertiliser P of up to 160 and 213 kg/ha, respectively, were realised. Sugarcane plants were generally less responsive. Apart from a 30% DW increase with VAM when 2.7 mg P/kg was added, DW of +VAM plants was equivalent to, or worse than in the case of 222 mg P/kg, DW of -VAM plants. For all 3 host species, colonisation was least at the highest P application, presumably from excessive P within the plant tissue. Critical P concentrations for the 3 host species were below those reported elsewhere, and for soybean and sugarcane, the critical concentration for +VAM plants was lower than that of -VAM plants. There are 3 implications that arise from this study. First, VAM fungi present in cane-growing soils can promote the growth of maize and soybean, which are potential rotation crops, over a range of P levels. Second, the mycorrhizal strain taken from this site did not generally contribute to a yield decline in sugarcane plants. Third, application of P fertiliser is not necessary for sugarcane when acid-extractable P is
Resumo:
Copyright © Springer Science+Business Media Dordrecht 2014.
Resumo:
The objectives of Participant 4 were: - Establishment and maintenance of a representative collection of AM fungal species in vivo on trap plant cultures. - Study of the effects of early mycorrhizal inoculation in the growth and health of in vitro plantlets and their subsequent behaviour in the nursery. - Effect of the mycorrhization of in vitro produced bananas and plantains on plant growth and health, under biotic stress conditions (nematode and fungi)
Resumo:
The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are ancient asexually reproducing organisms that form symbioses with the majority of plant species, improving plant nutrition and promoting plant diversity. Little is known about the evolution or organization of the genomes of any eukaryotic symbiont or ancient asexual organism. Direct evidence shows that one AMF species is heterokaryotic; that is, containing populations of genetically different nuclei. It has been suggested, however, that the genetic variation passed from generation to generation in AMF is simply due to multiple chromosome sets (that is, high ploidy). Here we show that previously documented genetic variation in Pol-like sequences, which are passed from generation to generation, cannot be due to either high ploidy or repeated gene duplications. Our results provide the clearest evidence so far for substantial genetic differences among nuclei in AMF. We also show that even AMF with a very large nuclear DNA content are haploid. An underlying principle of evolutionary theory is that an individual passes on one or half of its genome to each of its progeny. The coexistence of a population of many genomes in AMF and their transfer to subsequent generations, therefore, has far-reaching consequences for understanding genome evolution.