991 resultados para methanol electro-oxidation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pd/C catalysts with designed lattice constants were synthesized for the electro-oxidation of formic acid. By changing the solvents in the preparation procedure, it was demonstrated that the different lattice constants of Pd crystallites could be controlled as desired. The varied lattice constants may be attributed to the difference in the interactions between solvents and PdCl2. it was found that the lattice constant had an obvious effect on the electro-catalytic performance of Pd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is reported for the first time that the slow electrochemical kinetics process for the electro-oxidation of ethanol can be promoted by changing the electrochemical environment. The electro-oxidation of ethanol at a Pt electrode in the presence of Eu3+ cations was studied and an enhancement effect was exhibited. Cyclic voltammetry experiment results showed that the peak current density for the electro-oxidation of ethanol was increased in the presence of EU3+ in the ethanol solution. A preliminary discussion of the mechanism of the enhancement effect is given. This is based on a CO stripping experiment, which shows that either the onset potential or the peak potential of CO oxidation is shifted negatively after adding Eu3+ to the solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present investigation, the electrochemically-assisted oxidation of benzene in a H-2-O-2 proton exchange membrane fuel cell (PEMFC) for electricity and phenol cogeneration is studied. Experiments were carried out in a PEMFC electrochemical reactor using Pd black as cathode electrocatalyst at 60 and 80 degrees C, respectively and 1 atm back pressure. Indeed, it was found that the only product detected under the examined experimental conditions was phenol. The online GC product analysis revealed that it is impossible to produce phenol when the fuel cell circuit is open (I = 0) under all the examined experimental conditions. When the fuel cell circuit was closed, however, the phenol yield was found to follow a volcano-type dependence on the cur-rent of the external circuit. It was found that the maximum phenol yield was 0.35% at 100 mA/cm(2) at 80 degrees C. At the same time, the PEMFC performance was also investigated during the phenol generation process. Furthermore, experiments with the rotating ring disc electrode (RRDE) technique showed that the intermediate oxidation product, i.e. H2O2 existed during the oxygen electro-reduction process. The cyclic voltammograms showed that benzene was strongly adsorbed on the Pd surface, leading to a degradation of the PEMFC performance. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mechanistic study of the direct oxidation of ammonia has been reported in several room-temperature ionic liquids (RTILs), namely, [C(4)mim][BF4], [C(4)mim][OTf], [C(2)mim][NTf2], [C(4)mim][NTf2], and [C(4)mim][PF6], on a 10 mu m diameter Pt microdisk electrode. In four of the RTILs studied, the cyclic voltammetric analysis suggests that ammonia is initially oxidized to nitrogen, N-2, and protons, which are transferred to an ammonia molecule, forming NH4+ via the protonation of the anion(s) (A(-)). In contrast, NH4+ is formed first in [C(4)mim][PF6], followed by the protonated anion(s), HA. In all five RTILs, both HA and NH4+ are reduced at the electrode surface, forming hydrogen gas, which is then oxidized. The effect of changing the RTIL anion is discussed, and this may have implications in the defining of pK(a) in RTIL media. This work also has implications in the possible amperometric sensing of ammonia gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of bromide has been investigated by linear sweep and cyclic voltammetry at platinum electrodes in the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, ([C(4)mim][NTf2]), and the conventional aprotic solvent. acetonitrile, (MeCN). Similar voltammetry was observed in both solvents, despite their viscosities differing by more than an order of magnitude. DigiSim(R) was employed to simulate the voltammetric response. The mechanism is believed to involve the direct oxidation of bromide to bromine in a heterogeneous step, followed by a homogenous reaction to form the tribromide anion: 2Br(-) --> Br-2 + 2e(-)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results detail a novel methodology for the electrochemical determination of ammonia based on its interaction with hydroquinone in DMF. It has been shown that ammonia reversibly removes protons from the hydroquinone molecules, thus facilitating the oxidative process with the emergence of a new wave at less positive potentials. The analytical utility of the proposed methodology has been examined with a linear range from 10 to 95 ppm and corresponding limit-of-detection of 4.2 ppm achievable. Finally, the response of hydroquinone in the presence of ammonia has been examined in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluormethylsulfonyl)imide, [EMIM][N(Tf)(2)]. Analogous voltammetric waveshapes to that observed in DMF were obtained, thereby confirming the viability of the method in either DMF or [EMIM][N(Tf)(2)] as solvent. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ FTIR spectroscopic and electrochemical data and ex situ (emersion) electron diffraction (LEED) and RHEED) and Auger spectroscopic data are presented on the structure and reactivity, with respect to the electro-oxidation of CO, of the Ru(0001) single-crystal surface in perchloric acid solution. In both the absence and the presence of adsorbed CO, the Ru(0001) electrode shows the potential-dependent formation of well-defined and ordered oxygen-containing adlayers. At low potentials (e.g., from -80 to +200 mV vs Ag/AgCl), a (2 × 2)-O phase, which is unreactive toward CO oxidation, is formed, in agreement with UHV studies. Increasing the potential results in the formation of (3 × 1) and (1 × 1) phases at 410 and 1100 mV, respectively, with a concomitant increase in the reactivity of the surface toward CO oxidation. Both linear (CO ) and three-fold-hollow (CO ) binding CO adsorbates (bands at 2000-2040 and 1770-1800 cm , respectively) were observed on the Ru(0001) electrode. The in situ FTIR data show that the adsorbed CO species remain in compact islands as CO oxidation proceeds, suggesting that the oxidation occurs at the boundaries between the CO and O domains. At low CO coverages, reversible relaxation (at lower potentials) and compression (at higher potentials) of the CO adlayer were observed and rationalized in terms of the reduction and formation of surface O adlayers. The data obtained from the Ru(0001) electrode are in marked contrast to those observed on polycrystalline Ru, where only linear CO is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)(6)(3-/4-) redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 mu m diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of k(mt) > 0.01 m s(-1) (or k(mt) > 1.0 cm s(-1)) are observed at 50 mu m diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 mu m diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 mu m diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme-modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)63–/4– redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 µm diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of kmt > 0.01 m s–1(or kmt > 1.0 cm s–1) are observed at 50 µm diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 µm diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 µm diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents results of studies of carbon-dispersed Pt-Rh (1:1) nanoparticles as electrocatalysts for the ethanol electro-oxidation. The influences of the crystallite size and the cell temperature on the yields of CO2, acetaldehyde and acetic acid are investigated. Metal nanoparticles were prepared by two different routes: (1) impregnation on carbon powder followed by thermal reduction on hydrogen atmosphere and (2) chemical reduction of the precursor salts. The surface active area and the electrochemical activity of the electrocatalysts were estimated by CO stripping and cyclic voltammetry in the absence and in the presence of ethanol, respectively. Reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR) and Differential Electrochemical Mass Spectrometry (DEMS). The electrochemical stripping of CO and the electrochemical ethanol oxidation were slightly faster on the Pt-Rh electrocatalysts compared to Pt/C. Also, in situ FTIR spectra and DEMS measurements evidenced that the CO2/acetaldehyde and the CO2/acetic acid ratios are higher for the Pt-Rh/C materials in relation to Pt/C. This was ascribed to the activation of the C-C bond breaking by Rh, this being more prominent for the materials with smaller crystallite sizes. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates the effects of carbon-supported Pt, Pt-Ru, Pt-Rh and Pt-Ru-Rh alloy electrocatalysts oil the yields of CO2 and acetic acid as electro-oxidation products of ethanol. Electronic and structural features of these metal alloys were studied by in situ X-ray absorption spectroscopy (XAS). The electrochemical activity was investigated by polarization experiments and the reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR). Electrochemical stripping of CO. which is one of the adsorbed intermediates, presented a faster oxidation kinetics on the Pt-Ru electrocatalyst, and similar rates of reaction on Pt-Rh and Pt. The electrochemical current of ethanol oxidation showed a higher value and the onset potential was less positive oil Pt-Ru. However, in situ FTIR spectra evidenced that the CO2/acetic acid ratio is higher for the materials with Rh, mainly at lower potentials. These results indicate that the Ru atoms act mainly by providing oxygenated species for the oxidation of ethanol intermediates, and point out ail important role of Rh on the C-C bond dissociation. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatiotemporal pattern formation in the electrocatalytic oxidation of sulfide on a platinum disk is investigated using electrochemical methods and a charge-coupled device (CCD) camera simultaneously. The system is characterized by different oscillatory regions spread over a wide potential range. An additional series resistor and a large electrode area facilitate observation of multiple regions of kinetic instabilities along the current/potential curve. Spatiotemporal patterns on the working electrode, such as fronts, pulses, spirals, twinkling eyes, labyrinthine stripes, and alternating synchronized deposition and dissolution, are observed at different operating conditions of series resistance and sweep rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)