60 resultados para metacestode
Resumo:
OBJECTIVES: The disease alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is fatal if treatment is unsuccessful. Current treatment options are, at best, parasitostatic, and involve taking benzimidazoles (albendazole, mebendazole) for the whole of a patient's life. In conjunction with the recent development of optimized procedures for E. multilocularis metacestode cultivation, we aimed to develop a rapid and reliable drug screening test, which enables efficient screening of a large number of compounds in a relatively short time frame. METHODS: Metacestodes were treated in vitro with albendazole, the nitro-thiazole nitazoxanide and 29 nitazoxanide derivatives. The resulting leakage of phosphoglucose isomerase (PGI) activity into the medium supernatant was measured and provided an indication of compound efficacy. RESULTS: We show that upon in vitro culture of E. multilocularis metacestodes in the presence of active drugs such as albendazole, the nitro-thiazole nitazoxanide and 30 different nitazoxanide derivatives, the activity of PGI in culture supernatants increased. The increase in PGI activity correlated with the progressive degeneration and destruction of metacestode tissue in a time- and concentration-dependent manner, which allowed us to perform a structure-activity relationship analysis on the thiazolide compounds used in this study. CONCLUSIONS: The assay presented here is inexpensive, rapid, can be used in 24- and 96-well formats and will serve as an ideal tool for first-round in vitro tests on the efficacy of large numbers of antiparasitic compounds.
Resumo:
Host-parasite interactions in the E. multilocularis-intermediate host model depend on a subtle balance between cellular immunity, which is responsible for host's resistance towards the metacestode, the larval stage of the parasite, and tolerance induction and maintenance. The pathological features of alveolar echinococcosis. the disease caused by E. multilocularis, are related both to parasitic growth and to host's immune response, leading to fibrosis and necrosis, The disease spectrum is clearly dependent on the genetic background of the host as well as on acquired disturbances of Th1-related immunity. The laminated layer of the metacestode, and especially its carbohydrate components, plays a major role in tolerance induction. Th2-type and anti-inflammatory cytokines, IL-10 and TGF-beta, as well as nitric oxide, are involved in the maintenance of tolerance and partial inhibition of cytotoxic mechanisms. Results of studies in the experimental mouse model and in patients suggest that immune modulation with cytokines, such as interferon-alpha, or with specific antigens could be used in the future to treat patients with alveolar echinococcosis and/or to prevent this very severe parasitic disease.
Resumo:
Serology is an important tool for the diagnosis of alveolar echinococcosis (AE) in humans. In order to improve serodiagnostic performance, we have developed an in vitro-produced Echinococcus mulilocularis metacestode vesicle fluid (EmVF) antigen for application in an immunoblot assay. Immunoblot analysis of EmVF revealed an abundant immunoreactive band triplet of 20-22 kDa, achieving a sensitivity of 100% based on the testing of sera from 62 pre-operative and pre-treatment cases of active and inactive AE. Thus, the EmVF-immunoblotting allowed the specific detection of cases seronegative by the Em2- and/or EmII/3-10-ELISA, usually attributable to abortive, inactive cases of AE. The specificity of the EmVF-immunoblotting did not allow discrimination between AE and cystic echinococcosis (CE) but was 100% with respect to non-Echinococcus parasitic infections or cancer malignancies. Based on the findings of this study, it is recommended that the current ELISA test combination (Em2- and II/3-10-ELISA) be complemented with EmVF-immunoblotting, allowing an improved diagnosis of both clinical and subclinical forms of AE, including those associated with E. multilocularis-specific antibody reactivities not detectable by ELISA.
Resumo:
The T-cell-mediated immune response exhibits a crucial function in the control of the intrahepatic proliferation of Echinococcus multilocularis larvae in mice and humans, both being natural intermediate hosts of the parasite. Antigen B (AgB), a metabolized Echinococcus spp. lipoprotein, contributes to the modulation of the T-cell immune response, and distinct sites of the corresponding AgB1, AgB3 and AgB4 genes were shown to be under positive selection pressure. Since several AgB gene variants are present in a single Echinococcus metacestode, we used secondary E. multilocularis infections in BALB/c and in athymic nude mice (devoid of T-cell responses) to analyze the effect of the cellular immune response on the expression and diversity of EmAgB1-EmAgB4 genes. We demonstrated hereby that EmAgB transcripts were less abundant in nude mice during the early phase of infection (at one month post-infection), and that EmAgB2 is simultaneously down-regulated when compared to the other three genes. A negative relationship exists between the level of transcription and diversity of EmAgB genes. Moreover, no excess of non-synonymous substitutions was found among the distinct EmAgB alleles from a single host. Together, these results pointed to the effect of purifying selection, which seemed to eliminate the detrimental AgB variants generated during the development of the metacestode within the peritoneal cavity of its intermediate host.
Resumo:
Echinococcus multilocularis and Echinococcus granulosus metacestode infections in humans cause alveolar echinococcosis and cystic echinococcosis, respectively, in which metacestode development in visceral organs often results in particular organ failure. Further, cystic hydatidosis in farm animals causes severe economic losses. Although benzimidazole derivatives such as mebendazole and albendazole are being used as therapeutic agents, there is often no complete recovery after treatment. Hence, in searching for novel treatment options, we examined the in vitro efficacies of a number of isoflavones against Echinococcus metacestodes and protoscoleces. The most prominent isoflavone, genistein, exhibits significant metacestodicidal activity in vitro. However, genistein binds to the estrogen receptor and can thus induce estrogenic effects, which is a major concern during long-term chemotherapy. We have therefore investigated the activities of a number of synthetic genistein derivatives carrying a modified estrogen receptor binding site. One of these, Rm6423, induced dramatic breakdown of the structural integrity of the metacestode germinal layer of both species within 5 to 7 days of in vitro treatment. Further, examination of the culture medium revealed increased leakage of parasite proteins into the medium during treatment, but zymography demonstrated a decrease in the activity of metalloproteases. Moreover, two of the genistein derivatives, Rm6423 and Rm6426, induced considerable damage in E. granulosus protoscoleces, rendering them nonviable. These findings demonstrate that synthetic isoflavones exhibit distinct in vitro effects on Echinococcus metacestodes and protoscoleces, which could potentially be exploited further for the development of novel chemotherapeutical tools against larval-stage Echinococcus infection.
Resumo:
Numerous genetic variants of the Echinococcus antigen B (AgB) are encountered within a single metacestode. This could be a reflection of gene redundancy or the result of a somatic hypermutation process. We evaluate the complexity of the AgB multigene family by characterizing the upstream promoter regions of the 4 already known genes (EgAgB1-EgAgB4) and evaluating their redundancy in the genome of 3 Echinococcus species (E. granulosus, E. ortleppi and E. multilocularis) using PCR-based approaches. We have ascertained that the number of AgB gene copies is quite variable, both within and between species. The most repetitive gene seems to be AgB3, of which there are more than 110 copies in E. ortleppi. For E. granulosus, we have cloned and characterized 10 distinct upstream promoter regions of AgB3 from a single metacestode. Our sequences suggest that AgB1 and AgB3 are involved in gene conversion. These results are discussed in light of the role of gene redundancy and recombination in parasite evasion mechanisms of host immunity, which at present are known for protozoan organisms, but virtually unknown for multicellular parasites.
Resumo:
Larval infection with Echinococcus multilocularis starts with the intrahepatic postoncospheral development of a metacestode that-at its mature stage-consists of an inner germinal and an outer laminated layer (GL ; LL). In certain cases, an appropriate host immune response may inhibit parasite proliferation. Several lines of evidence obtained in vivo and in vitro indicate the important bio-protective role of the LL. For instance, the LL has been proposed to protect the GL from nitric oxide produced by periparasitic macrophages and dendritic cells, and also to prevent immune recognition by surrounding T cells. On the other hand, the high periparasitic NO production by peritoneal exsudate cells contributes to periparasitic immunosuppression, explaining why iNOS deficienct mice exhibit a significantly lower susceptibility towards experimental infection. The intense periparasitic granulomatous infiltration indicates a strong host-parasite interaction, and the involvement of cellular immunity in control of the metacestode growth kinetics is strongly suggested by experiments carried out in T cell deficient mouse strains. Carbohydrate components of the LL, such as Em2(G11) and Em492, as well as other parasite metabolites yield immunomodulatory effects that allow the parasite to survive in the host. I.e., the IgG response to the Em2(G11)-antigen takes place independently of alpha-beta+CD4+T cells, and in the absence of interactions between CD40 and CD40 ligand. Such parasite molecules also interfere with antigen presentation and cell activation, leading to a mixed Th1/Th2-type response at the later stage of infection. Furthermore, Em492 and other (not yet published) purified parasite metabolites suppress ConA and antigen-stimulated splenocyte proliferation. Infected mouse macrophages (AE-MØ) as antigen presenting cells (APC) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells when compared to normal MØ. As AE-MØ fully maintain their capacity to appropriately process antigens, a failure in T cell receptor occupancy by antigen-Ia complex or/and altered co-stimulatory signals can be excluded. Studying the status of accessory molecules implicated in T cell stimulation by MØ, it could be shown that B7-1 (CD80) and B7-2 (CD86) remained unchanged, whereas CD40 was down-regulated and CD54 (=ICAM-1) slightly up-regulated. FACS analysis of peritoneal cells revealed a decrease in the percentage of CD4+ and CD8+T cells in AE-infected mice. Taken together the obstructed presenting-activity of AE-MØ appeared to trigger an unresponsiveness of T cells leading to the suppression of their clonal expansion during the chronic phase of AE infection. Interesting information on the parasite survival strategy and potential can be obtained upon in vitro and in vivo treatment. Hence, we provided very innovative results by showing that nitazoxanide, and now also, respectively, new modified compounds may represent a useful alternative to albendazole. In the context of chemotherapeutical repression of parasite growth, we searched also for parasite molecules, whose expression levels correlate with the viability and growth activity of E. multilocularis metacestode. Expression levels of 14-3-3 and II/3-10, relatively quantified by realtime reverse transcription-PCR using a housekeeping gene beta-actin, were studied in permissive nu/nu and in low-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro-treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide for a period of 8 days resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels,
Resumo:
Echinococcus granulosus and Echinococcus multilocularis are cestode parasites, of which the metacestode (larval) stages cause the diseases cystic echinococcosis (CE) and alveolar echinococcosis (AE), respectively. Albendazole and mebendazole are presently used for chemotherapeutical treatment. However, these benzimidazoles do not appear to be parasiticidal in vivo against AE. In addition, failures in drug treatments as well as the occurrence of side-effects have been reported. New drugs are needed to cure AE and CE, which are considered to be neglected diseases. Strategies currently being implemented to identify novel chemotherapeutical treatment options include (i) conventional primary in vitro testing of broad-spectrum anti-infective drugs, either in parallel with, or followed by, animal experimentation; (ii) studies of drugs which interfere with the proliferation of cancer cells and of Echinococcus metacestodes; (iii) exploitation of the similarities between the parasite and mammalian signalling machineries, with a special focus on targeting specific signalling receptors; (iv) in silico approaches, employing the current Echinococcus genomic database information to search for suitable targets for compounds with known modes of action. In the present article, we review the efforts toward obtaining better anti-parasitic compounds which have been undertaken to improve chemotherapeutical treatment of echinococcosis, and summarize the achievements in the field of host-parasite interactions which may also lead to new immuno-therapeutical options.
Resumo:
Echinococcus granulosus and Echinococcus multilocularis are cestode parasites, of which the metacestode (larval) stages cause the neglected diseases cystic echinococcosis (CE) and alveolar echinococcosis (AE), respectively. The benzimidazoles albendazole and mebendazole are presently used for the chemotherapeutical treatment, alone or prior to and after surgery. However, in AE these benzimidazoles do not appear to be parasiticidal in vivo. In addition, failures in drug treatments as well as the occurrence of side-effects have been reported, leading to discontinuation of treatment or to progressive disease. Therefore, new drugs are needed to cure AE and CE. Strategies that are currently employed in order to identify novel chemotherapeutical treatment options include in vitro and in vivo testing of broad-spectrum anti-infective drugs or drugs that interfere with unlimited proliferation of cancer cells. The fact that the genome of E. multilocularis has recently been sequenced has opened other avenues, such as the selection of novel drugs that interfere with the parasite signalling machinery, and the application of in silico approaches by employing the Echinococcus genome information to search for suitable targets for compounds of known mode of action.
Resumo:
Fifty members of a novel class of antimicrobial compounds, 2-(4-R-phenoxymethyl)benzoic acid thioureides, were synthesized and characterized with respect to their activities against three parasites of human relevance, namely the protozoa Giardia lamblia and Toxoplasma gondii, and the larval (metacestode) stage of the tapeworm Echinococcus multilocularis. To determine the selective toxicity of these compounds, the human colon cancer cell line Caco2 and primary cultures of human foreskin fibroblasts (HFF) were also investigated. The new thioureides were obtained in a three-step-reaction process and subsequently characterized by their physical constants (melting point, solubility). The chemical structures were elucidated by (1)H NMR, (13)C NMR, IR spectral methods and elemental analysis. The analyses confirmed the final and intermediate compound structures and the synthesis. The compounds were then tested on the parasites in vitro. All thioureides, except two compounds with a nitro group, were totally ineffective against Giardia lamblia. 23 compounds inhibited the proliferation of T. gondii, three of them with an IC(50) of approximately 1 microM. The structural integrity of E. multilocularis metacestodes was affected by 22 compounds. In contrast, HFF were not susceptible to any of these thioureides, while Caco2 cells were affected by 17 compounds, two of them inhibiting proliferation with an IC(50) in the micromolar range. Thioureides may thus present a promising class of anti-infective agents.
Resumo:
BACKGROUND: Alveolar echinococcosis (AE) is caused by the larval stage (metacestode) of Echinococcus multilocularis. The domestic dog can act as a definitive host and harbor adult cestodes in its small intestine or become an aberrant intermediate host carrying larval stages that may cause severe lesions in the liver, lungs and other organs with clinical signs similar to AE in humans. CASE PRESENTATION: A case of canine AE, affecting the liver and prostate with development of multilocular hydatid paraprostatic cysts and possible lung involvement is described in an 8-year-old neutered male Labrador retriever dog.The dog presented with progressive weight loss, acute constipation, stranguria and a suspected soft tissue mass in the sublumbar region. Further evaluation included computed tomography of the thorax and abdomen, which revealed cystic changes in the prostate, a paraprostatic cyst, as well as lesions in the liver and lungs. Cytological examination of fine-needle aspirates of the liver, prostate and paraprostatic cyst revealed parasitic hyaline membranes typical of an Echinococcus infection and the presence of E. multilocularis-DNA was confirmed by PCR. The dog was treated with albendazole and debulking surgery was considered in case there was a good response to antiparasitic treatment. Constipation and stranguria resolved completely. Six months after the definitive diagnosis, the dog was euthanized due to treatment-resistant ascites and acute anorexia and lethargy. CONCLUSIONS: To the authors' knowledge, this is the first publication of an E. multilocularis infection in a dog causing prostatic and paraprostatic cysts. Although rare, E. multilocularis infection should be considered as an extended differential diagnosis in dogs presenting with prostatic and paraprostatic disease, especially in areas where E. multilocularis is endemic.
Resumo:
Alveolar echinococcosis (AE) in humans is a parasitic disease characterized by severe damage to the liver and occasionally other organs. AE is caused by infection with the metacestode (larval) stage of the fox tapeworm Echinococcus multilocularis, usually infecting small rodents as natural intermediate hosts. Conventionally, human AE is chemotherapeutically treated with mebendazole or albendazole. There is, however still the need for improved chemotherapeutical options. Primary in vivo studies on drugs of interest are commonly performed in small laboratory animals such as mice and Mongolian jirds, and in most cases, a secondary infection model is used, whereby E. multilocularis metacestodes are directly injected into the peritoneal cavity or into the liver. Disadvantages of this methodological approach include risk of injury to organs during the inoculation and, most notably, a limitation in the macroscopic (visible) assessment of treatment efficacy. Thus, in order to monitor the efficacy of chemotherapeutical treatment, animals have to be euthanized and the parasite tissue dissected. In the present study, mice were infected with E. multilocularis metacestodes through the subcutaneous route and were then subjected to chemotherapy employing albendazole. Serological responses to infection were comparatively assessed in mice infected by the conventional intraperitoneal route. We demonstrate that the subcutaneous infection model for secondary AE facilitates the assessment of the progress of infection and drug treatment in the live animal.
Resumo:
Alveolar echinococcosis (AE), caused by larva stage of Echinococcus multilocularis, is one of the lethal parasitic diseases of man and a major public health problem in many countries in the northern hemisphere. When the living conditions and habits in Turkey were considered in terms of relation with the life cycle of the parasite, it was suggested that AE has been much more common than reported mainly from the Eastern Anatolia region of Turkey. Since in vitro serologic diagnosis tests with high specificity for AE have not been used in our country, most of the cases with liver lesions were misdiagnosed by radiological investigations as malignancies. The aim of this study was to evaluate the diagnostic value of the in-house ELISA methods developed by using three different antigens (EgHF, Em2, EmII/3-10) in the serological diagnosis of AE. The study samples included a total of 100 sera provided by Bern University Parasitology Institute where samples were obtained from patients with helminthiasis and all were confirmed by clinical, parasitological and/or histopathological means. Ten samples from each of the cases infected by E.multilocularis, E.granulosus, Taenia solium, Wuchereria bancrofti, Strongyloides stercolaris, Ascaris lumbricoides, Toxocara canis, Trichinella spiralis, Fasciola hepatica and Schistosoma haematobium were studied. In the study, EgHF (E.granulosus hydatid fluid) antigens were prepared in our laboratory from the liver cyst fluids of sheeps with cystic echinococcosis, however Em2 (E.multilocularis metacestode-purified laminated layer) and EmII/3-10 (E.multilocularis recombinant protoscolex tegument) antigens were provided by Bern University Parasitology Institute. Flat bottom ELISA plates were covered with EgHF, Em2 and EmII/3-10 antigens in the concentrations of 2.5 µg, 1 µg and 0.18 µg per well, respectively, and all sera were tested by EgHF-ELISA, Em2-ELISA and EmII/3-10-ELISA methods. For each tests, the samples which were reactive above the cut-off value (mean OD of negative controls+2 SD) were accepted as positive. The sensitivity of the ELISA tests performed with EgHF, Em2 and Em2II/3-10 antigens were estimated as 100%, 90% and 90%, respectively, whereas the specificity were 63%, 91% and 91%, respectively. When Em2-ELISA and EmII/3-10-ELISA tests were evaluated together, the specificity increased to 96%. Our data indicated that the highest sensitivity (100% with EgHF-ELISA) and specificity (96% with Em2-ELISA + EmII/3-10-ELISA) for the serodiagnosis of AE can be achieved by the combined use of the ELISA tests with three different antigens. It was concluded that the early and accurate diagnosis of AE in our country which is endemic for that disease, could be supported by the use of highly specific serological tests such as Em2-ELISA ve EmII/3-10-ELISA contributing radiological data.
Resumo:
The search for novel therapeutic options to cure alveolar echinococcosis (AE), due to the metacestode of Echinococcus multilocularis, is ongoing, and these developments could also have a profound impact on the treatment of cystic echinococcosis (CE), caused by the closely related Echinococcus granulosus s.l. Several options are being explored. A viable strategy for the identification of novel chemotherapeutically valuable compounds includes whole-organism drug screening, employing large-scale in vitro metacestode cultures and, upon identification of promising compounds, verification of drug efficacy in small laboratory animals. Clearly, the current focus is targeted towards broad-spectrum anti-parasitic or anti-cancer drugs and compound classes that are already marketed, or that are in development for other applications. The availability of comprehensive Echinococcus genome information and gene expression data, as well as significant progress on the molecular level, has now opened the door for a more targeted drug discovery approach, which allows exploitation of defined pathways and enzymes that are essential for the parasite. In addition, current in vitro and in vivo models that are used to assess drug efficacy should be optimized and complemented by methods that give more detailed information on the host-parasite interactions that occur during drug treatments. The key to success is to identify, target and exploit those parasite molecules that orchestrate activities essential to parasite survival.
Resumo:
Pathogenesis of chronically developing alveolar echinococcosis (AE) is characterized by a continuous, granulomatous, periparasitic infiltration of immune cells surrounding the metacestode of Echinococcus multilocularis (E.multilocularis) in the affected liver. A detailed cytokine and chemokine profile analysis of the periparasitic infiltrate in the liver has, however, not yet been carried out in a comprehensive way all along the whole course of infection in E. multilocularis intermediate hosts. We thus assessed the hepatic gene expression profiles of 18 selected cytokine and chemokine genes using qRT-PCR in the periparasitic immune reaction and the subsequent adjacent, not directly affected, liver tissue of mice from day 2 to day 360 post intra-hepatic injection of metacestode. DNA microarray analysis was also used to get a more complete picture of the transcriptional changes occurring in the liver surrounding the parasitic lesions. Profiles of mRNA expression levels in the hepatic parasitic lesions showed that a mixed Th1/Th2 immune response, characterized by the concomitant presence of IL-12α, IFN-γ and IL-4, was established very early in the development of E. multilocularis. Subsequently, the profile extended to a combined tolerogenic profile associating IL-5, IL-10 and TGF-β. IL-17 was permanently expressed in the liver, mostly in the periparasitic infiltrate; this was confirmed by the increased mRNA expression of both IL-17A and IL-17F from a very early stage, with a subsequent decrease of IL-17A after this first initial rise. All measured chemokines were significantly expressed at a given stage of infection; their expression paralleled that of the corresponding Th1, Th2 or Th17 cytokines. In addition to giving a comprehensive insight in the time course of cytokines and chemokines in E. multilocularis lesion, this study contributes to identify new targets for possible immune therapy to minimize E. multilocularis-related pathology and to complement the only parasitostatic effect of benzimidazoles in AE.