882 resultados para metabolism and cognition
Resumo:
Power-time curves and metabolic properties of Tetrahymena thermophila BF5 exposed to different Yb3+ stop levels were studied by ampoule method of isothermal calorimetry at 28 degrees C. Metabolic rate (r) decreased significantly while peak time (PT) increased with the increase of Yb3+ stop. These results were mainly due to the inhibition of cell growth, which corresponded to the decrease of cell number obtained by cell counting. Compared with cell counting, calorimetry was sensible, easy to use and convenient for monitoring the toxic effects of Yb3+ stop on cells and freshwater ecosystem. It was also found that cell membrane fluidity decreased significantly under the effects of Yb3+ stop, which indicated that Yb3+ could be membrane active molecules with its effect on cell membranes as fundamental aspect of its toxicity.
Resumo:
Traditionally, in robotics, artificial intelligence and neuroscience, there has been a focus on the study of the control or the neural system itself. Recently there has been an increasing interest in the notion of embodiment not only in robotics and artificial intelligence, but also in the neurosciences, psychology and philosophy. In this paper, we introduce the notion of morphological computation, and demonstrate how it can be exploited on the one hand for designing intelligent, adaptive robotic systems, and on the other hand for understanding natural systems. While embodiment has often been used in its trivial meaning, i.e. "intelligence requires a body", the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. Morphological computation is about connecting body, brain and environment. A number of case studies are presented to illustrate the concept. We conclude with some speculations about potential lessons for neuroscience and robotics. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Resting metabolism was measured in immature mandarin fish Siniperca chuatsi weighing 42.1-510.2 g and Chinese snakehead Channa argus weighing 41.5-510.3 g at 10, 15, 20, 25, 30 and 35 degreesC. Heat increment of feeding was measured in mandarin fish weighing 202.0 (+/-14.0) g and snakehead weighing 200.8 (+/-19.3) g fed swamp leach Misgurnus anguillicaudatus at 1% body weight per day at 28 degreesC. In both species, weight exponent in the power relationship between resting metabolism and body weight was not affected by temperature. The relationship between resting metabolism and temperature could be described by a power function. The temperature exponent was 1.39 in mandarin fish and 2.10 in snakehead (P < 0.05), indicating that resting metabolism in snakehead increased with temperature at a faster rate than in mandarin fish. Multiple regression models were used to describe the effects of body weight (W, g) and temperature (T, C) on the resting metabolism (R-s, mg O-2/h): In R-s = - 5.343 + 0.772 In W + 1.387 In T for the mandarin fish and In R-s = -7.863 + 0.801 ln W + 2.104 In T for the Chinese snakehead. The proportion of food energy channelled to heat increment was 8.7% in mandarin fish and 6.8% in snakehead. (C) 2000 Elsevier Science Inc. All rights reserved.
Resumo:
The role of phosphorus cycling in algal metabolism was studied in a shallow lake, Donghu, in Wuhan using the methods of measuring cell quota C, N and P, and calculating nutrients uptake rate by algal photosynthesis. The mean daily phosphorus uptake rate of phytoplankton varied between 0.04-0.11 and 0.027-0.053 g/m2/d in station I and station II respectively. The turnover time of phosphorus in phytoplankton metabolism ranged from 0.75-5.0 days during 1979-1986. The available P was 0.176 (+/- 0.156) g/m3 (mean +/- SD) in 1982 and 0.591 (+/- 0.24) g/m3 in 1986. The relationship between P/B ratio (Y) and TP (X: mg/l) was described by the following regression equation Y = 1.163 + 0.512logX (r = 0.731, P < 0.001). The dynamics of algal biomass and algal species succession were monitored as the indicators of environmental enrichment. The small-sized algae have replaced the blue-green algae as the dominant species during 1979-1986. The small-sized algae include Merismopedia glauca, Cryptomonas ovata, Cryptomonas erosa, several species Cyclotella. There has been drastic decrease in algal biomass and an obvious increase in P/B ratio. A nutrient competition hypothesis is proposed to explain the reason of the disappearance of blue-green algae bloom. The drastic change in algal size and the results in high P/B ratio (reaching a maximum mean daily ratio of 1.09 in 1986) may suggest a transition of algal species from K-selection to r-selection in Lake Donghu.
Resumo:
Net organic metabolism (that is, the difference between primary production and respiration of organic matter) in the coastal ocean may be a significant term in the oceanic carbon budget. Historical change in the rate of this net metabolism determines the importance of the coastal ocean relative to anthropogenic perturbations of the global carbon cycle. Consideration of long-term rates of river loading of organic carbon, organic burial, chemical reactivity of land-derived organic matter, and rates of community metabolism in the coastal zone leads us to estimate that the coastal zone oxidizes about 7 × 1012 moles C/yr. The open ocean is apparently also a site of net organic oxidation (∼16 × 1012 moles C/yr). Thus organic metabolism in the ocean appears to be a source of CO2 release to the atmosphere rather than being a sink for atmospheric carbon dioxide. The small area of the coastal ocean accounts for about 30% of the net oceanic oxidation. Oxidation in the coastal zone (especially in bays and estuaries) takes on particular importance, because the input rate is likely to have been altered substantially by human activities on land.
Resumo:
— Consideration of how people respond to the question What is this? has suggested new problem frontiers for pattern recognition and information fusion, as well as neural systems that embody the cognitive transformation of declarative information into relational knowledge. In contrast to traditional classification methods, which aim to find the single correct label for each exemplar (This is a car), the new approach discovers rules that embody coherent relationships among labels which would otherwise appear contradictory to a learning system (This is a car, that is a vehicle, over there is a sedan). This talk will describe how an individual who experiences exemplars in real time, with each exemplar trained on at most one category label, can autonomously discover a hierarchy of cognitive rules, thereby converting local information into global knowledge. Computational examples are based on the observation that sensors working at different times, locations, and spatial scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels, which are reconciled by implicit underlying relationships that the network’s learning process discovers. The ARTMAP information fusion system can, moreover, integrate multiple separate knowledge hierarchies, by fusing independent domains into a unified structure. In the process, the system discovers cross-domain rules, inferring multilevel relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, the ARTMAP information fusion network features distributed code representations which exploit the model’s intrinsic capacity for one-to-many learning (This is a car and a vehicle and a sedan) as well as many-to-one learning (Each of those vehicles is a car). Fusion system software, testbed datasets, and articles are available from http://cns.bu.edu/techlab.
Resumo:
A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.
Resumo:
The genetics and biochemistry involved in the biodegradation of styrene and the production of polyhydroxyalkanoates in Pseudomonas putida CA-3 have been well characterised to date. Knowledge of the role played by global regulators in controlling these pathways currently represents a critical knowledge gap in this area. Here we report on our efforts to identify such regulators using mini-Tn5 transposon mutagenesis of the P. putida CA-3 genome. The library generated was subjected to phenotypic screening to identify mutants exhibiting a reduced sensitivity to the effects of carbon catabolite repression of aromatic pathway activity. Our efforts identified a clpX disrupted mutant which exhibited wild-type levels of growth on styrene but significantly reduced growth on phenylacetic acid. RT-PCR analysis of key PACoA catabolon genes necessary for phenylacetic acid metabolism, and SDS-PAGE protein profile analyses suggest that no direct alteration of PACoA pathway transcriptional or translational activity was involved. The influence of global regulators affecting the accumulation of PHAs in P. putida CA-3 was also studied. Phenotypic screening of the mini-Tn5 library revealed a gacS sensor kinase gene disruption resulting in the loss of PHA accumulation capacity in P. putida CA-3. Subsequent SDS-PAGE protein analyses of the wild type and gacS mutant strains identified post-transcriptional control of phaC1 synthase as a key point of control of PHA synthesis in P. putida CA-3. Disruption of the gacS gene in another PHA accumulating organism, P. putida S12, also demonstrated a reduction of PHA accumulation capacity. PHA accumulation was observed to be disrupted in the CA-3 gacS mutant under phosphorus limited growth conditions. Over-expression studies in both wild type CA-3 and gacS mutant demonstrated that rsmY over-expression in gacS disrupted P. putida CA-3 is insufficient to restore PHA accumulation in the cell however in wild type cells, over-expression of rsmY results in an altered PHA monomer compositions.
Resumo:
It is commonly accepted that aerobic exercise increases hippocampal neurogenesis, learning and memory, as well as stress resiliency. However, human populations are widely variable in their inherent aerobic fitness as well as their capacity to show increased aerobic fitness following a period of regimented exercise. It is unclear whether these inherent or acquired components of aerobic fitness play a role in neurocognition. To isolate the potential role of inherent aerobic fitness, we exploited a rat model of high (HCR) and low (LCR) inherent aerobic capacity for running. At a baseline, HCR rats have two- to three-fold higher aerobic capacity than LCR rats. We found that HCR rats also had two- to three- fold more young neurons in the hippocampus than LCR rats as well as rats from the heterogeneous founder population. We then asked whether this enhanced neurogenesis translates to enhanced hippocampal cognition, as is typically seen in exercise-trained animals. Compared to LCR rats, HCR rats performed with high accuracy on tasks designed to test neurogenesis-dependent pattern separation ability by examining investigatory behavior between very similar objects or locations. To investigate whether an aerobic response to exercise is required for exercise-induced changes in neurogenesis and cognition, we utilized a rat model of high (HRT) and low (LRT) aerobic response to treadmill training. At a baseline, HRT and LRT rats have comparable aerobic capacity as measured by a standard treadmill fit test, yet after a standardized training regimen, HRT but not LRT rats robustly increase their aerobic capacity for running. We found that sedentary LRT and HRT rats had equivalent levels of hippocampal neurogenesis, but only HRT rats had an elevation in the number of young neurons in the hippocampus following training, which was positively correlated with accuracy on pattern separation tasks. Taken together, these data suggest that a significant elevation in aerobic capacity is necessary for exercise-induced hippocampal neurogenesis and hippocampal neurogenesis-dependent learning and memory. To investigate the potential for high aerobic capacity to be neuroprotective, doxorubicin chemotherapy was administered to LCR and HCR rats. While doxorubicin induces a progressive decrease in aerobic capacity as well as neurogenesis, HCR rats remain at higher levels on those measures compared to even saline-treated LCR rats. HCR and LCR rats that received exercise training throughout doxorubicin treatment demonstrated positive effects of exercise on aerobic capacity and neurogenesis, regardless of inherent aerobic capacity. Overall, these findings demonstrate that inherent and acquired components of aerobic fitness play a crucial role not only in the cardiorespiratory system but also the fitness of the brain.