106 resultados para mesoderm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Wnt family of secreted signalling molecules controls a wide range of developmental processes in all metazoans. In this investigation we concentrate on the role that members of this family play during the development of (1) the somites and (2) the neural crest. (3) We also isolate a novel component of the Wnt signalling pathway called Naked cuticle and investigate the role that this protein may play in both of the previously mentioned developmental processes. (1) In higher vertebrates the paraxial mesoderm undergoes a mesenchymal-to-epithelial transformation to form segmentally organised structures called somites. Experiments have shown that signals originating from the ectoderm overlying the somites or from midline structures are required for the formation of the somites, but their identity has yet to be determined. Wnt6 is a good candidate as a somite epithelialisation factor from the ectoderm since it is expressed in this tissue. In this study we show that injection of Wnt6-producing cells beneath the ectoderm at the level of the segmental plate or lateral to the segmental plate leads to the formation of numerous small epithelial somites. We show that Wnts are indeed responsible for the epithelialisation of somites by applying Wnt antagonists which result in the segmental plate being unable to form somites. These results show that Wnt6, the only member of this family to be localised to the chick paraxial ectoderm, is able to regulate the development of epithelial somites and that cellular organisation is pivotal in the execution of the differentiation programmes. (2) The neural crest is a population of multipotent progenitor cells that arise from the neural ectoderm in all vertebrate embryos and form a multitude of derivatives including the peripheral sensory neurons, the enteric nervous system, Schwann cells, pigment cells and parts of the craniofacial skeleton. The induction of the neural crest relies on an ectodermally derived signal, but the identity of the molecule performing this role in amniotes is not known. Here we show that Wnt6, a protein expressed in the ectoderm, induces neural crest production. (3) The intracellular response to Wnt signalling depends on the choice of signalling cascade activated in the responding cell. Cells can activate either the canonical pathway that modulates gene expression to control cellular differentiation and proliferation, or the non-canonical pathway that controls cell polarity and movement (Pandur et al. 2002b). Recent work has identified the protein Naked cuticle as an intracellular switch promoting the non-canonical pathway at the expense of the canonical pathway. We have cloned chick Naked cuticle-1 (cNkd1) and demonstrate that it is expressed in a dynamic manner during early embryogenesis. We show that it is expressed in the somites and in particular regions where cells are undergoing movement. Lastly our study shows that the expression of cNkd1 is regulated by Wnt expression originating from the neural tube. This study provides evidence that non-canonical Wnt signalling plays a part in somite development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. Here we characterize all four gene families in the dogfish Seyliorhinus canicula, a member of the cartilaginous fish lineage that diverged before the radiation of osteichthyan vertebrates. We identify two FoxC genes, two FoxF genes, and single FoxQ1 and FoxL1 genes, demonstrating cluster duplication preceded the radiation of gnathostomes. The expression of all six genes was analyzed by in situ hybridization. The results show conserved expression of FoxL1, FoxF, and FoxC genes in different compartments of the mesoderm and of FoxQ1 in pharyngeal endoderm and its derivatives, confirming these as ancient sites of Fox gene expression, and also illustrate multiple cases of lineage-specific expression domains. Comparison to invertebrate chordates shows that the majority of conserved vertebrate expression domains mark tissues that are part of the primitive chordate body plan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertebrate Zic gene family encodes C2H2 zinc finger transcription factors closely related to the Gli proteins. Zic genes are expressed in multiple areas of developing vertebrate embryos, including the dorsal neural tube where they act as potent neural crest inducers. Here we describe the characterization of a Zic ortholog from the amphioxus Branchiostoma floridae and further describe the expression of a Zic ortholog from the ascidian Ciona intestinalis. Molecular phylogenetic analysis and sequence comparisons suggest the gene duplications that formed the vertebrate Zic family were specific to the vertebrate lineage. In Ciona maternal CiZic/Ci-macho1 transcripts are localized during cleavage stages by asymmetric cell division, whereas zygotic expression by neural plate cells commences during neurulation. The amphioxus Zic ortholog AmphiZic is expressed in dorsal mesoderm and ectoderm during gastrulation, before being eliminated first from midline cells and then from all neurectoderm during neurulation. After neurulation, expression is reactivated in the dorsal neural tube and dorsolateral somite. Comparison of CiZic and AmphiZic expression with vertebrate Zic expression leads to two main conclusions. First, Zic expression allows us to define homologous compartments between vertebrate and amphioxus somites, showing primitive subdivision of vertebrate segmented mesoderm. Second, we show that neural Zic expression is a chordate synapomorphy, whereas the precise pattern of neural expression has evolved differently on the different chordate lineages. Based on these observations we suggest that a change in Zic regulation, specifically the evolution of a dorsal neural expression domain in vertebrate neurulae, was an important step in the evolution of the neural crest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mouse and chick embryos, cyclic expression of lunatic fringe has an important role in the regulation of mesoderm segmentation. We have isolated a Fringe gene from the protochordate amphioxus. Amphioxus is the closest living relative of the vertebrates, and has mesoderm that is definitively segmented in a manner that is similar to, and probably homologous with, that of vertebrates. AmphiFringe is placed basal to vertebrate Fringe genes in molecular phylogenetic analyses, indicating that the duplications that formed radical-, manic- and lunatic fringe are specific to the vertebrate lineage. AmphiFringe expression was detected in the anterior neural plate of early neurulae, where it resolved into a series of segmental patches by the mid-neurulae stage. No AmphiFringe transcripts were detected in the mesoderm. Based on these observations, we propose a model depicting a successive recruitment of Fringe in the maintenance then regulation of segmentation during vertebrate evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chick Early B-cell Factor-2 and 3 (cEbf2 and cEbf3) genes are members of EBF family of helix loop helix transcription factors. The expression, regulation and importance of these genes have been extensively studied in lymphatic, nervous and muscular tissues. Recently, a new role for some members of EBF in bone development has been investigated. However, the expression profile and regulation in the axial skeleton precursor, the somite, have yet to be elucidated. Therefore, this study was aimed to investigate the expression and regulation of cEbf2 and cEbf3 genes in the developing chick embryo somite from HH4 to HH28. The spatiotemporal expression study revealed predominant localization of cEbf2 and cEbf3 in the lateral sclerotomal domains and later around vertebral cartilage anlagen of the arch and the proximal rib. Subsequently, microsurgeries, ectopic gene expression experiments were performed to analyze which tissues and factors regulate cEbf2 and cEbf3 expression. Lateral barriers experiments indicated the necessity for lateral signal(s) in the regulation of cEbf2 and cEbf3 genes. Results from tissue manipulations and ectopic gene expression experiments indicate that lateral plate-derived Bmp4 signals are necessary for the initiation and maintenance of cEbf2 and cEbf3 genes in somites. In conclusion, cEbf2 and cEbf3 genes are considered as lateral sclerotome markers which their expression is regulated by Bmp4 signals from the lateral plate mesoderm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quiescin Q6/sulfhydryl oxidases (QSOX) are revisited thiol oxidases considered to be involved in the oxidative protein folding, cell cycle control and extracellular matrix remodeling. They contain thioredoxin domains and introduce disulfide bonds into proteins and peptides, with the concomitant hydrogen peroxide formation, likely altering the redox environment. Since it is known that several developmental processes are regulated by the redox state, here we assessed if QSOX could have a role during mouse fetal development. For this purpose, an anti-recombinant mouse QSOX antibody was produced and characterized. In E-13.5, E-16.5 fetal tissues, QSOX immunostaining was confined to mesoderm- and ectoderm-derived tissues, while in P1 neonatal tissues it was slightly extended to some endoderm-derived tissues. QSOX expression, particularly by epithelial tissues, seemed to be developmentally-regulated, increasing with tissue maturation. QSOX was observed in loose connective tissues in all stages analyzed, intra and possibly extracellularly, in agreement with its putative role in oxidative folding and extracellular matrix remodeling. In conclusion, QSOX is expressed in several tissues during mouse development, but preferentially in those derived from mesoderm and ectoderm, suggesting it could be of relevance during developmental processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of similar to 26 months and a nearly identical maximal life expectancy of similar to 37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated-weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity-HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Placentae of three hystricimorph rodents-capybara, agouti and paca-were examined by conventional histology, immunohistochemistry for cytokeratin and vimentin, and TUNEL staining. The placentae were divided into lobules of labyrinthine syncytium separated by interlobular and marginal trophoblast. The subplacenta comprised cytotrophoblasts, supported on lamellae of allantoic mesoderm, and syncytiotrophoblast. The central excavation was still apparent in the definitive placenta of capybara. In agouti and paca, the decidua of the junctional zone formed a mesoplacenta comprising a capsule and a pedicle. Towards term the pedicle formed a tenuous attachment between placenta and uterine wall comprising a few maternal vessels surrounded by degraded tissue. In paca placenta, it was shown by TUNEL staining that breakdown of this tissue occurred by apoptosis. The visceral yolk sac was highly villous and, in agouti, the yolk sac villi were extremely long. Lateral to its attachment to the placenta, the fetal surface was covered with non-vascular yolk sac endoderm. A layer of spongiotrophoblast cells was interposed between the endoderm and the marginal trophoblast. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues?Results: In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor - joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for similar to 11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes) and between sexes (19 genes). The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes.Conclusion: Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene x tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ten cases of odontogenic myxoma (OM) and six cases of ameloblastic fibroma (AF) were subjected to comparative analysis by the AgNOR technique, in order to determine a possible difference in cell proliferation index between these lesions. The mean AgNOR number of the mesenchymal component of AF was compared with its epithelial component and the difference was not found to be statistically significant. The mean AgNOR index of the AF group was significantly higher than that of the OM group. Moreover, the mesenchymal component of AF demonstrated increased AgNOR numbers compared with that of OM (P<0.05). These results suggest that the epithelial and mesenchymal components of AF may have similar cell proliferative activity. However, the cell proliferative index of this lesion seems to be higher than that of OM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FMVZ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies with mesenchymal stem cells (MSCs) have been developed in many species because of its ability to differentiate into other mesoderm lineages, capacity of self-regeneration, low immunogenicity, paracrine, anti-inflamatory, immunomodulatory and antiapoptotic effects which make then a promissory source to be used in therapeutic strategies. The aim of this study is to report the technique of harvest of bone marrow (BM) in the coxal tuberosity (CT) of buffaloes. For this, the animals were selected, identified and contained in a stock. Then trichotomy was performed in the region corresponding to the CT. After identifying the anatomic site it was performed antisepsis, local anesthetic block and introduction of a myelogram's needle (Lang(R)) for BM aspiration. Once the needle was firmly fixed in the CT, the mandril was removed and proceeded to BM aspiration with a syringe (20 mL) containing 1 ml of heparin at 1000 IU / mL and 1 mL of PBS. After the collection, each sample collected was manually homogenized, identified and referred to the LRACT - FMVZ / UNESP-BRAZIL for the correct processing. The anatomical site tested showed to be an alternative site of harvest of BM once provided the appropriate isolation and culture of the mononuclear fraction. Moreover, the procedure was performed without difficulty and with great security. Based on this, it can be conclude that CT is an excellent anatomical site for isolation and culture of MSCs and the proposed technique is viable and feasible to be held in buffaloes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Zellgenealogie des Polychaeten Platynereis dumerilii wurde durch Farbstoffinjektion in die Blastomeren des 2-, 4- und 8-Zellstadiums, sowie die Zellen 2d, 2d112, 4d und 4d1 untersucht. Injektionen gelangen durch Aufweichung der Vitellinhülle mittels Dithioerythritol und Trypsin. Die injizierten Keime wurden zur Trochophora bzw zum dreisegmentigen Jungwurm aufgezogen, fixiert und mit dem konfokalen Rasterlichtmikroskop dreidimensional aufgenommen. Die animal-vegetale Achse des Frühkeims entspricht der antero-posterioren Achse des Jungwurms. Die Mikromeren des ersten Quartetts sind radiär um die antero-posteriore Achse angeordnet und bilden den Kopf. Die Mikromere 2d proliferiert bilateralsymmetrisch von der dorsalen Mittellinie aus und liefert das gesamte Rumpfektoderm. Indirekt ließ sich ableiten, daß die Mikromeren 2a1 bis 2c1 schmale ektodermale Streifen zwischen Kopf und Rumpf bilden und aus 2a2 und 2c2 das ektodermale Stomodaeum hervorgeht. Die Mikromeren des dritten Quartetts sowie möglicherweise 2b2 bilden 'Ektomesoderm'. 4d proliferiert ebenfalls bilateralsymmetrisch von der dorsalen Mittellinie aus zum Rumpfmesoderm und liefert vielleicht noch kleine Beiträge zum Aufbau des Darmes. Der Mitteldarm stammt von den dotterreichen Makromeren 4A bis 4D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Endoderm organ primordia become specified between gastrulation and gut tube folding in Amniotes. Although the requirement for RA signaling for the development of a few individual endoderm organs has been established a systematic assessment of its activity along the entire antero-posterior axis has not been performed in this germ layer. METHODOLOGY/PRINCIPAL FINDINGS: RA is synthesized from gastrulation to somitogenesis in the mesoderm that is close to the developing gut tube. In the branchial arch region specific levels of RA signaling control organ boundaries. The most anterior endoderm forming the thyroid gland is specified in the absence of RA signaling. Increasing RA in anterior branchial arches results in thyroid primordium repression and the induction of more posterior markers such as branchial arch Hox genes. Conversely reducing RA signaling shifts Hox genes posteriorly in endoderm. These results imply that RA acts as a caudalizing factor in a graded manner in pharyngeal endoderm. Posterior foregut and midgut organ primordia also require RA, but exposing endoderm to additional RA is not sufficient to expand these primordia anteriorly. We show that in chick, in contrast to non-Amniotes, RA signaling is not only necessary during gastrulation, but also throughout gut tube folding during somitogenesis. Our results show that the induction of CdxA, a midgut marker, and pancreas induction require direct RA signaling in endoderm. Moreover, communication between CdxA(+) cells is necessary to maintain CdxA expression, therefore synchronizing the cells of the midgut primordium. We further show that the RA pathway acts synergistically with FGF4 in endoderm patterning rather than mediating FGF4 activity. CONCLUSIONS/SIGNIFICANCE: Our work establishes that retinoic acid (RA) signaling coordinates the position of different endoderm organs along the antero-posterior axis in chick embryos and could serve as a basis for the differentiation of specific endodermal organs from ES cells.