923 resultados para meso-scale processes and turbulence
Resumo:
The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.
Resumo:
Isochrysis galbana is a widely-used strain in aquaculture in spite of its low productivity. To maximize the productivity of processes based on this microalgae strain, a model was developed considering the influence of irradiance, temperature, pH and dissolved oxygen concentration on the photosynthesis and respiration rate. Results demonstrate that this strain tolerates temperatures up to 35ºC but it is highly sensitive to irradiances higher than 500 µE·m-2·s-1 and dissolved oxygen concentrations higher than 11 mg·l-1. With the researcher group of the “Universidad de Almeria”, the developed model was validated using data from an industrial-scale outdoor tubular photobioreactor demonstrating that inadequate temperature and dissolved oxygen concentrations reduce productivity to half that which is maximal, according to light availability under real outdoor conditions. The developed model is a useful tool for managing working processes, especially in the development of new processes based on this strain and to take decisions regarding optimal control strategies. Also the outdoor production of Isochrysis galbana T-iso in industrial size tubular photobioreactors (3.0 m3) has been studied. Experiments were performed modifying the dilution rate and evaluating the biomass productivity and quality, in addition to the overall performance of the system. Results confirmed that T-iso can be produced outdoor at commercial scale in continuous mode, productivities up to 20 g·m-2·day-1 of biomass rich in proteins (45%) and lipids (25%) being obtained. The utilization of this type of photobioreactors allows controlling the contamination and pH of the cultures, but daily variation of solar radiation imposes the existence of inadequate dissolved oxygen concentration and temperature at which the cells are exposed to inside the reactor. Excessive dissolved oxygen reduced the biomass productivity to 68% of maximal, whereas inadequate temperature reduces to 63% of maximal. Thus, optimally controlling these parameters the biomass productivity can be duplicated. These results confirm the potential to produce this valuable strain at commercial scale in optimally designed/operated tubular photobioreactors as a biotechnological industry.
Resumo:
Creating Lakes from Open Pit Mines: Processes and Considerations, Emphasis on Northern Environments. This document summarizes the literature of mining pit lakes (through 2007), with a particular focus on issues that are likely to be of special relevance to the creation and management of pit lakes in northern climates. Pit lakes are simply waterbodies formed by filling the open pit left upon the completion of mining operations with water. Like natural lakes, mining pit lakes display a huge diversity in each of these subject areas. However, pit lakes are young and therefore are typically in a non-equilibrium state with respect to their rate of filling, water quality, and biology. Separate sections deal with different aspects of pit lakes, including their morphometry, geology, hydrogeology, geochemistry, and biology. Depending on the type and location of the mine, there may be opportunities to enhance the recreational or ecological benefits of a given pit lake, for example, by re-landscaping and re-vegetating the shoreline, by adding engineered habitat for aquatic life, and maintaining water quality. The creation of a pit lake may be a regulatory requirement to mitigate environmental impacts from mining operations, and/or be included as part of a closure and reclamation plan. Based on published case studies of pit lakes, large-scale bio-engineering projects have had mixed success. A common consensus is that manipulation of pit lake chemistry is difficult, expensive, and takes many years to achieve remediation goals. For this reason, it is prudent to take steps throughout mine operation to reduce the likelihood of future water quality problems upon closure. Also, it makes sense to engineer the lake in such a way that it will achieve its maximal end-use potential, whether it be permanent and safe storage of mine waste, habitat for aquatic life, recreation, or water supply.
Resumo:
We propose a novel measure to assess the presence of meso-scale structures in complex networks. This measure is based on the identi?cation of regular patterns in the adjacency matrix of the network, and on the calculation of the quantity of information lost when pairs of nodes are iteratively merged. We show how this measure is able to quantify several meso-scale structures, like the presence of modularity, bipartite and core-periphery con?gurations, or motifs. Results corresponding to a large set of real networks are used to validate its ability to detect non-trivial topological patterns.
Resumo:
Recent research indicates that social identity theory offers an important lens to improve our understanding of founders as enterprising individuals, the venture creation process, and its outcomes. Yet, further advances are hindered by the lack of a valid scale that could be used to measure founders' social identities - a problem that is particularly severe because social identity is a multidimensional construct that needs to be assessed properly so that organizational phenomena can be understood. Drawing on social identity theory and the systematic classification of founders' social identities (Darwinians, Communitarians, Missionaries) provided in Fauchart and Gruber (2011), this study develops and empirically validates a 12-item scale that allows scholars to capture the multidimensional nature of social identities of entrepreneurs. Our validation tests are unusually comprehensive and solid, as we not only validate the developed scale in the Alpine region (where it was originally conceived), but also in 12 additional countries and the Anglo-American region. Scholars can use the scale to identify founders' social identities and to relate these identities to micro-level processes and outcomes in new firm creation. Scholars may also link founders' social identities to other levels of analysis such as industries (e.g., industry evolution) or whole economies (e.g., economic growth).
Resumo:
Social identity theory offers an important lens to improve understanding of founders as enterprising individuals, the venture creation process, and its outcomes. Yet, further advances are hindered by the lack of valid scales to measure founders’ social identities. Drawing on social identity theory and a systematic classification of founders’ social identities (Darwinians, Communitarians, and Missionaries), we develop and test a corresponding 15-item scale in the Alpine region and validate it in 13 additional countries and regions. The scale allows identifying founders’ social identities and relating them to processes and outcomes in entrepreneurship. The scale is available online in 15 languages.
Resumo:
This thesis explores the interaction between Micros (<10 employees) from non-creative sectors and website designers ("Creatives") that occurred when creating a website of a higher order than a basic template site. The research used Straussian Grounded Theory Method with a longitudinal design, in order to identify what knowledge transferred to the Micros during the collaboration, how it transferred, what factors affected the transfer and outcomes of the transfer including behavioural additionality. To identify whether the research could be extended beyond this, five other design areas were also examined, as well as five Small to Medium Enterprises (SMEs) engaged in website and branding projects. The findings were that, at the start of the design process, many Micros could not articulate their customer knowledge, and had poor marketing and visual language skills, knowledge core to web design, enabling targeted communication to customers through images. Despite these gaps, most Micros still tried to lead the process. To overcome this disjoint, the majority of the designers used a knowledge transfer strategy termed in this thesis as ‘Bi-Modal Knowledge Transfer’, where the Creative was aware of the transfer but the Micro was unaware, both for drawing out customer knowledge from the Micro and for transferring visual language skills to the Micro. Two models were developed to represent this process. Two models were also created to map changes in the knowledge landscapes of customer knowledge and visual language – the Knowledge Placement Model and the Visual Language Scale. The Knowledge Placement model was used to map the placement of customer knowledge within the consciousness, extending the known Automatic-Unconscious -Conscious model, adding two more locations – Peripheral Consciousness and Occasional Consciousness. Peripheral Consciousness is where potential knowledge is held, but not used. Occasional Consciousness is where potential knowledge is held but used only for specific tasks. The Visual Language Scale was created to measure visual language ability from visually responsive, where the participant only responds personally to visual symbols, to visually multi-lingual, where the participant can use visual symbols to communicate with multiple thought-worlds. With successful Bi-Modal Knowledge Transfer, the outcome included not only an effective website but also changes in the knowledge landscape for the Micros and ongoing behavioural changes, especially in marketing. These effects were not seen in the other design projects, and only in two of the SME projects. The key factors for this difference between SMEs and Micros appeared to be an expectation of knowledge by the Creatives and failure by the SMEs to transfer knowledge within the company.
Resumo:
Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. ^ Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. ^ Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably. ^
Resumo:
Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably.
Resumo:
The activity of Fuego volcano during the 1999 - 2013 eruptive episode is studied through field, remote sensing and observatory records. Mapping of the deposits allows quantifying the erupted volumes and areas affected by the largest eruptions during this period. A wide range of volcanic processes results in a diversity of products and associated deposits, including minor airfall tephra, rockfall avalanches, lava flows, and pyroclastic flows. The activity can be characterized by long term, low level background activity, and sporadic larger explosive eruptions. Although the background activity erupts lava and ash at a low rate (~ 0.1 m3/s), the persistence of such activity over time results in a significant contribution (~ 30%) to the eruption budget during the studied period. Larger eruptions produced the majority of the volume of products during the studied period, mainly during three large events (May 21, 1999, June 29, 2003, and September 13, 2012), mostly in the form of pyroclastic flows. A total volume of ~ 1.4 x 108 m3 was estimated from the mapped deposits and the estimated background eruption rate. Posterior remobilization of pyroclastic flow material by stream erosion in the highly confined Barranca channels leads to lahar generation, either by normal rainfall, or by extreme rainfall events. A reassessment of the types of products and volumes erupted during the decade of 1970's allows comparing the activity happening since 1999 with the older activity, and suggests that many of the eruptive phenomena at Fuego may have similar mechanisms, despite the differences in scale between. The deposits of large pyroclastic flows erupted during the 1970's are remarkably similar in appearance to the deposit of pyroclastic flows from the 1999 - 2013 period, despite their much larger volume; this is also the case for prehistoric eruptions. Radiocarbon dating of pyroclastic flow deposits suggests that Fuego has produced large eruptions many times during the last ~ 2 ka, including larger eruptions during the last 500 years, which has important hazard implications. A survey was conducted among the local residents living near to the volcano, about their expectations of possible future crises. The results show that people are aware of the risk they could face in case of a large eruption, and therefore they are willing to evacuate in such case. However, their decision to evacuate may also be influenced by the conditions in which the evacuation could take place. If the evacuation represents a potential loss of their livelihood or property they will be more hesitant to leave their villages during a large eruption. The prospect of facing hardship conditions during the evacuation and in the shelters may further cause reluctance to evacuate. A short discussion on some of the issues regarding risk assessment and management through an early warning system is presented in the last chapter.
Resumo:
The correlations between the evolution of the Super Massive Black Holes (SMBHs) and their host galaxies suggests that the SMBH accretion on sub-pc scales (active galactice nuclei, AGN) is linked to the building of the galaxy over kpc scales, through the so called AGN feedback. Most of the galaxy assembly occurs in overdense large scale structures (LSSs). AGN residing in powerful sources in LSSs, such as the proto-brightest cluster galaxies (BCGs), can affect the evolution of the surrounding intra-cluster medium (ICM) and nearby galaxies. Among distant AGN, high-redshift radio-galaxies (HzRGs) are found to be excellent BCG progenitor candidates. In this Thesis we analyze novel interferometric observations of the so-called "J1030" field centered around the z = 6.3 SDSS Quasar J1030+0524, carried out with the Atacama large (sub-)millimetre array (ALMA) and the Jansky very large array (JVLA). This field host a LSS assembling around a powerful HzRG at z = 1.7 that shows evidence of positive AGN feedback in heating the surrounding ICM and promoting star-formation in multiple galaxies at hundreds kpc distances. We report the detection of gas-rich members of the LSS, including the HzRG. We showed that the LSS is going to evolve into a local massive cluster and the HzRG is the proto-BCG. we unveiled signatures of the proto-BCG's interaction with the surrounding ICM, strengthening the positive AGN feedback scenario. From the JVLA observations of the "J1030" we extracted one of the deepest extra-galactic radio surveys to date (~12.5 uJy at 5 sigma). Exploiting the synergy with the X-ray deep survey (~500 ks) we investigated the relation of the X-ray/radio emission of a X-ray-selected sample, unveiling that the radio emission is powered by different processes (star-formation and AGN), and that AGN-driven sample is mostly composed by radio-quiet objects that display a significant X-ray/radio correlation.
Resumo:
The Centers for High Cost Medication (Centros de Medicação de Alto Custo, CEDMAC), Health Department, São Paulo were instituted by project in partnership with the Clinical Hospital of the Faculty of Medicine, USP, sponsored by the Foundation for Research Support of the State of São Paulo (Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP) aimed at the formation of a statewide network for comprehensive care of patients referred for use of immunobiological agents in rheumatological diseases. The CEDMAC of Hospital de Clínicas, Universidade Estadual de Campinas (HC-Unicamp), implemented by the Division of Rheumatology, Faculty of Medical Sciences, identified the need for standardization of the multidisciplinary team conducts, in face of the specificity of care conducts, verifying the importance of describing, in manual format, their operational and technical processes. The aim of this study is to present the methodology applied to the elaboration of the CEDMAC/HC-Unicamp Manual as an institutional tool, with the aim of offering the best assistance and administrative quality. In the methodology for preparing the manuals at HC-Unicamp since 2008, the premise was to obtain a document that is participatory, multidisciplinary, focused on work processes integrated with institutional rules, with objective and didactic descriptions, in a standardized format and with electronic dissemination. The CEDMAC/HC-Unicamp Manual was elaborated in 10 months, with involvement of the entire multidisciplinary team, with 19 chapters on work processes and techniques, in addition to those concerning the organizational structure and its annexes. Published in the electronic portal of HC Manuals in July 2012 as an e-Book (ISBN 978-85-63274-17-5), the manual has been a valuable instrument in guiding professionals in healthcare, teaching and research activities.
Resumo:
The reactions of meso-1,2-bis(phenylsulfinyl)ethane (meso-bpse) with Ph2SnCl2, 2-phenyl-1,3-dithiane trans-1-trans-3-dioxide (pdtd) with n-Bu2SnCl2 and 1,2-cis-bis-(phenylsulfinyl)ethene (rac-,cis-cbpse) with Ph2SnCl2, in 1:1 molar ratio, yielded [{Ph2SnCl2(meso-bpse)}n], [{n-Bu2SnCl2(pdtd)}2] and [{Ph2SnCl2(rac,cis-cbpse)}x] (x = 2 or n), respectively. All adducts were studied by IR, Mössbauer and 119Sn NMR spectroscopic methods, elemental analysis and single crystal X-ray diffractometry. The X-ray crystal structure of [{Ph2SnCl2(meso-bpse)}n] revealed the occurrence of infinite chains in which the tin(IV) atoms appear in a distorted octahedral geometry with Cl atoms in cis and Ph groups in trans positions. The X-ray crystal structure of [{n-Bu2SnCl2(pdtd)}2] revealed discrete centrosymmetric dimeric species in which the tin(IV) atoms possess a distorted octahedral geometry with bridging disulfoxides in cis and n-butyl moieties in trans positions. The spectroscopic data indicated that the adduct containing the rac,cis-cbpse ligand can be dimeric or polymeric. The X-ray structural analysis of the free rac-,cis-cbpse sulfoxide revealed that the crystals belong to the C2/c space group.
Resumo:
The Pantanal of Nhecolândia, the world's largest and most diversified field of tropical lakes, comprises approximately 10,000 lakes, which cover an area of 24,000 km² and vary greatly in salinity, pH, alkalinity, colour, physiography and biological activity. The hyposaline lakes have variable pHs, low alkalinity, macrophytes and low phytoplankton densities. The saline lakes have pHs above 9 or 10, high alkalinity, a high density of phytoplankton and sand beaches. The cause of the diversity of these lakes has been an open question, which we have addressed in our research. Here we propose a hybrid process, both geochemical and biological, as the main cause, including (1) a climate with an important water deficit and poverty in Ca2+ in both superficial and phreatic waters; and (2) an elevation of pH during cyanobacteria blooms. These two aspects destabilise the general tendency of Earth's surface waters towards a neutral pH. This imbalance results in an increase in the pH and dissolution of previously precipitated amorphous silica and quartzose sand. During extreme droughts, amorphous silica precipitates in the inter-granular spaces of the lake bottom sediment, increasing the isolation of the lake from the phreatic level. This paper discusses this biogeochemical problem in the light of physicochemical, chemical, altimetric and phytoplankton data.
Resumo:
Classical and operant conditioning principles, such as the behavioral discrepancy-derived assumption that reinforcement always selects antecedent stimulus and response relations, have been studied at the neural level, mainly by observing the strengthening of neuronal responses or synaptic connections. A review of the literature on the neural basis of behavior provided extensive scientific data that indicate a synthesis between the two conditioning processes based mainly on stimulus control in learning tasks. The resulting analysis revealed the following aspects. Dopamine acts as a behavioral discrepancy signal in the midbrain pathway of positive reinforcement, leading toward the nucleus accumbens. Dopamine modulates both types of conditioning in the Aplysia mollusk and in mammals. In vivo and in vitro mollusk preparations show convergence of both types of conditioning in the same motor neuron. Frontal cortical neurons are involved in behavioral discrimination in reversal and extinction procedures, and these neurons preferentially deliver glutamate through conditioned stimulus or discriminative stimulus pathways. Discriminative neural responses can reliably precede operant movements and can also be common to stimuli that share complex symbolic relations. The present article discusses convergent and divergent points between conditioning paradigms at the neural level of analysis to advance our knowledge on reinforcement.