883 resultados para medical information extraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Procedural knowledge is the knowledge required to perform certain tasks. It forms an important part of expertise, and is crucial for learning new tasks. This paper summarises existing work on procedural knowledge acquisition, and identifies two major challenges that remain to be solved in this field; namely, automating the acquisition process to tackle bottleneck in the formalization of procedural knowledge, and enabling machine understanding and manipulation of procedural knowledge. It is believed that recent advances in information extraction techniques can be applied compose a comprehensive solution to address these challenges. We identify specific tasks required to achieve the goal, and present detailed analyses of new research challenges and opportunities. It is expected that these analyses will interest researchers of various knowledge management tasks, particularly knowledge acquisition and capture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.

Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.

Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.

Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the 2nd ShARe/CLEFeHealth evaluation lab which continues our evaluation resource building activities for the medical domain. In this lab we focus on patients' information needs as opposed to the more common campaign focus of the specialised information needs of physicians and other healthcare workers. The usage scenario of the lab is to ease patients and next-of-kins' ease in understanding eHealth information, in particular clinical reports. The 1st ShARe/CLEFeHealth evaluation lab was held in 2013. This lab consisted of three tasks. Task 1 focused on named entity recognition and normalization of disorders; Task 2 on normalization of acronyms/abbreviations; and Task 3 on information retrieval to address questions patients may have when reading clinical reports. This year's lab introduces a new challenge in Task 1 on visual-interactive search and exploration of eHealth data. Its aim is to help patients (or their next-of-kin) in readability issues related to their hospital discharge documents and related information search on the Internet. Task 2 then continues the information extraction work of the 2013 lab, specifically focusing on disorder attribute identification and normalization from clinical text. Finally, this year's Task 3 further extends the 2013 information retrieval task, by cleaning the 2013 document collection and introducing a new query generation method and multilingual queries. De-identified clinical reports used by the three tasks were from US intensive care and originated from the MIMIC II database. Other text documents for Tasks 1 and 3 were from the Internet and originated from the Khresmoi project. Task 2 annotations originated from the ShARe annotations. For Tasks 1 and 3, new annotations, queries, and relevance assessments were created. 50, 79, and 91 people registered their interest in Tasks 1, 2, and 3, respectively. 24 unique teams participated with 1, 10, and 14 teams in Tasks 1, 2 and 3, respectively. The teams were from Africa, Asia, Canada, Europe, and North America. The Task 1 submission, reviewed by 5 expert peers, related to the task evaluation category of Effective use of interaction and targeted the needs of both expert and novice users. The best system had an Accuracy of 0.868 in Task 2a, an F1-score of 0.576 in Task 2b, and Precision at 10 (P@10) of 0.756 in Task 3. The results demonstrate the substantial community interest and capabilities of these systems in making clinical reports easier to understand for patients. The organisers have made data and tools available for future research and development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background This paper presents a novel approach to searching electronic medical records that is based on concept matching rather than keyword matching. Aim The concept-based approach is intended to overcome specific challenges we identified in searching medical records. Method Queries and documents were transformed from their term-based originals into medical concepts as defined by the SNOMED-CT ontology. Results Evaluation on a real-world collection of medical records showed our concept-based approach outperformed a keyword baseline by 25% in Mean Average Precision. Conclusion The concept-based approach provides a framework for further development of inference based search systems for dealing with medical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Search technologies are critical to enable clinical sta to rapidly and e ectively access patient information contained in free-text medical records. Medical search is challenging as terms in the query are often general but those in rel- evant documents are very speci c, leading to granularity mismatch. In this paper we propose to tackle granularity mismatch by exploiting subsumption relationships de ned in formal medical domain knowledge resources. In symbolic reasoning, a subsumption (or `is-a') relationship is a parent-child rela- tionship where one concept is a subset of another concept. Subsumed concepts are included in the retrieval function. In addition, we investigate a number of initial methods for combining weights of query concepts and those of subsumed concepts. Subsumption relationships were found to provide strong indication of relevant information; their inclusion in retrieval functions yields performance improvements. This result motivates the development of formal models of rela- tionships between medical concepts for retrieval purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper outlines a novel approach for modelling semantic relationships within medical documents. Medical terminologies contain a rich source of semantic information critical to a number of techniques in medical informatics, including medical information retrieval. Recent research suggests that corpus-driven approaches are effective at automatically capturing semantic similarities between medical concepts, thus making them an attractive option for accessing semantic information. Most previous corpus-driven methods only considered syntagmatic associations. In this paper, we adapt a recent approach that explicitly models both syntagmatic and paradigmatic associations. We show that the implicit similarity between certain medical concepts can only be modelled using paradigmatic associations. In addition, the inclusion of both types of associations overcomes the sensitivity to the training corpus experienced by previous approaches, making our method both more effective and more robust. This finding may have implications for researchers in the area of medical information retrieval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measures of semantic similarity between medical concepts are central to a number of techniques in medical informatics, including query expansion in medical information retrieval. Previous work has mainly considered thesaurus-based path measures of semantic similarity and has not compared different corpus-driven approaches in depth. We evaluate the effectiveness of eight common corpus-driven measures in capturing semantic relatedness and compare these against human judged concept pairs assessed by medical professionals. Our results show that certain corpus-driven measures correlate strongly (approx 0.8) with human judgements. An important finding is that performance was significantly affected by the choice of corpus used in priming the measure, i.e., used as evidence from which corpus-driven similarities are drawn. This paper provides guidelines for the implementation of semantic similarity measures for medical informatics and concludes with implications for medical information retrieval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing amount of information that is annotated against standardised semantic resources offers opportunities to incorporate sophisticated levels of reasoning, or inference, into the retrieval process. In this position paper, we reflect on the need to incorporate semantic inference into retrieval (in particular for medical information retrieval) as well as previous attempts that have been made so far with mixed success. Medical information retrieval is a fertile ground for testing inference mechanisms to augment retrieval. The medical domain offers a plethora of carefully curated, structured, semantic resources, along with well established entity extraction and linking tools, and search topics that intuitively require a number of different inferential processes (e.g., conceptual similarity, conceptual implication, etc.). We argue that integrating semantic inference in information retrieval has the potential to uncover a large amount of information that otherwise would be inaccessible; but inference is also risky and, if not used cautiously, can harm retrieval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing number of patients search for medical information on the Internet. Understanding how they use the Internet is important, as this might impact their health, patient-practitioner roles, and general health care provision. In this article, we illustrate the motives of online health information seeking in the context of the doctor-patient relationship in Switzerland. We conducted semistructured interviews with patients who searched for health information online before or after a medical consultation. Findings suggest that patients searched for health information online to achieve the goals of preparing for the consultation, complementing it, validating it, and/or challenging its outcome. The initial motivations for online health information seeking are identified in the needs for acknowledgment, reduction of uncertainty, and perspective. Searching health information online was also encouraged by personal and contextual factors, that is, a person's sense of self-responsibility and the opportunity to use the Internet. Based on these results, we argue that online health information seeking is less concerned with what happens during the consultation than with what happens before or after it, in the sociocultural context.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"How do you film a punch?" This question can be posed by actors, make-up artists, directors and cameramen. Though they can all ask the same question, they are not all seeking the same answer. Within a given domain, based on the roles they play, agents of the domain have different perspectives and they want the answers to their question from their perspective. In this example, an actor wants to know how to act when filming a scene involving a punch. A make-up artist is interested in how to do the make-up of the actor to show bruises that may result from the punch. Likewise, a director wants to know how to direct such a scene and a cameraman is seeking guidance on how best to film such a scene. This role-based difference in perspective is the underpinning of the Loculus framework for information management for the Motion Picture Industry. The Loculus framework exploits the perspective of agent for information extraction and classification within a given domain. The framework uses the positioning of the agent’s role within the domain ontology and its relatedness to other concepts in the ontology to determine the perspective of the agent. Domain ontology had to be developed for the motion picture industry as the domain lacked one. A rule-based relatedness score was developed to calculate the relative relatedness of concepts with the ontology, which were then used in the Loculus system for information exploitation and classification. The evaluation undertaken to date have yielded promising results and have indicated that exploiting perspective can lead to novel methods of information extraction and classifications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Health information sharing has become a vital part of modern healthcare delivery. E-health technologies provide efficient and effective ways of sharing medical information, but give rise to issues that neither the medical professional nor the consumers have control over. Information security and patient privacy are key impediments that hinder sharing information as sensitive as health information. Health information interoperability is another issue which hinders the adoption of available e health technologies. In this paper we propose a solution for these problems in terms of information accountability, the HL7 interoperability standard and social networks for manipulating personal health records.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growing importance and need of data processing for information extraction is vital for Web databases. Due to the sheer size and volume of databases, retrieval of relevant information as needed by users has become a cumbersome process. Information seekers are faced by information overloading - too many result sets are returned for their queries. Moreover, too few or no results are returned if a specific query is asked. This paper proposes a ranking algorithm that gives higher preference to a user’s current search and also utilizes profile information in order to obtain the relevant results for a user’s query.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose - During multitasking, humans handle multiple tasks through task switching or engage in multitasking information behaviors. For example, a user switches between seeking new kitchen information and medical information. Recent studies provide insights these complex multitasking human information behaviors (HIB). However, limited studies have examined the interplay between information and non-information tasks. Design/methodology/approach - The goal of the paper was to examine the interplay of information and non-information task behaviors. Findings - This paper explores and speculates on a new direction in HIB research. The nature of HIB as a multitasking activity including the interplay of information and non-information behavior tasks, and the relation between multitasking information behavior to cognitive style and individual differences, is discussed. A model of multitasking between information and non-information behavior tasks is proposed. Practical implications/limitations - Multitasking information behavior models should include the interplay of information and non-information tasks, and individual differences and cognitive styles. Originality/value - The paper is the first information science theoretical examination of the interplay between information and non-information tasks. © Emerald Group Publishing Limited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose – Interactive information retrieval (IR) involves many human cognitive shifts at different information behaviour levels. Cognitive science defines a cognitive shift or shift in cognitive focus as triggered by the brain's response and change due to some external force. This paper aims to provide an explication of the concept of “cognitive shift” and then report results from a study replicating Spink's study of cognitive shifts during interactive IR. This work aims to generate promising insights into aspects of cognitive shifts during interactive IR and a new IR evaluation measure – information problem shift. Design/methodology/approach – The study participants (n=9) conducted an online search on an in-depth personal medical information problem. Data analysed included the pre- and post-search questionnaires completed by each study participant. Implications for web services and further research are discussed. Findings – Key findings replicated the results in Spink's study, including: all study participants reported some level of cognitive shift in their information problem, information seeking and personal knowledge due to their search interaction; and different study participants reported different levels of cognitive shift. Some study participants reported major cognitive shifts in various user-based variables such as information problem or information-seeking stage. Unlike Spink's study, no participant experienced a negative shift in their information problem stage or level of information problem understanding. Originality/value – This study builds on the previous study by Spink using a different dataset. The paper provides valuable insights for further research into cognitive shifts during interactive IR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Optimal adherence to antiretroviral therapy (ART) is necessary for people living with HIV/AIDS (PLHIV). There have been relatively few systematic analyses of factors that promote or inhibit adherence to antiretroviral therapy among PLHIV in Asia. This study assessed ART adherence and examined factors associated with suboptimal adherence in northern Viet Nam. Methods: Data from 615 PLHIV on ART in two urban and three rural outpatient clinics were collected by medical record extraction and from patient interviews using audio computer-assisted self-interview (ACASI). Results: The prevalence of suboptimal adherence was estimated to be 24.9% via a visual analogue scale (VAS) of past-month dose-missing and 29.1% using a modified Adult AIDS Clinical Trial Group scale for on-time dose-taking in the past 4 days. Factors significantly associated with the more conservative VAS score were: depression (p < 0.001), side-effect experiences (p < 0.001), heavy alcohol use (p = 0.001), chance health locus of control (p = 0.003), low perceived quality of information from care providers (p = 0.04) and low social connectedness (p = 0.03). Illicit drug use alone was not significantly associated with suboptimal adherence, but interacted with heavy alcohol use to reduce adherence (p < 0.001). Conclusions: This is the largest survey of ART adherence yet reported from Asia and the first in a developing country to use the ACASI method in this context. The evidence strongly indicates that ART services in Viet Nam should include screening and treatment for depression, linkage with alcohol and/or drug dependence treatment, and counselling to address the belief that chance or luck determines health outcomes.