939 resultados para mean germination time
Germinação de sementes de romäzeiras (Punica granatum L.) de acordo com a concentração de giberelina
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the allelopathic effect of soil samples collected under the canopies of three specimens of Copaifera langsdorffii the germination of Lactuca sativa and survey the natural seed bank according to seasonality. To test the allelopathic effect was carried experiments of pre and post-emergence with seeds of L. sativa and to quantify the stock of seeds, soil samples were collected from three specimens at three distances from the stem (1, 2 and 3 m) and at three depths (0-5, 5-10 and 10-15cm) in the region of savanna in the dry and wet seasons. The samples tested in bioassay of pre-emergence no significant influence on germinability, mean germination time and mean germination speed, but showed a difference in the synchronism of germination, these data were independent of sampling station. In test for post-emergence was observed statistical difference in the parameters evaluate (length of primary roots and hypocotyls) in both seasons. To quantify the natural seed bank were macroscopic analysis of each soil sample with the help of stereoscopic microscope. The analysis of the natural seed bank showed a larger number of seeds in the 0-5cm and in distance of 2m for both seasons. The results suggest the presence of allelochemical substances in soil samples collected under the canopy of Copaifera langsdorffii.
Resumo:
During the 24 hour period following inoculation, aggregation of spores and sporelings can have an important effect on the subsequent growth of filamentous fungi in submerged culture. This early phase of growth does not appear to have received much attention, and it was for this reason that the author's research was started. The aggregation, germination and early growth of the filamentous fungus Aspergillus niger have been followed in aerated tower fermenters, by microscopic examination. By studying many individual sporelings it has been possible to estimate the specific growth rate and germination times, and then to assess the branching characteristics of the fungus over a period of from 1 to 10 hours after germination. The results have been incorporated into computer models to simulate the development of the physical structure of individual and aggregated sporelings. Following germination, and an initial rapid growth phase, fungi were found to grow exponentially: in the case of A.niger the mean germination time was about 5 hours and the doubling time was as short as 1.5 hours. Branching also followed an exponential pattern and appeared to be related to hyphal length. Using a simple hypothesis for growth along with empirical parameters, typical fungal structures were generated using the computer models : these compared well with actual sporelings observed under the microscope. Preliminary work suggested that the techniques used in this research could be successfully applied to a range of filamentous fungi.
Resumo:
Soil incorporation of crop residues can lead to weed suppression by posing allelopathic and physical effects. Allelopathic potential of the crops sorghum, sunflower, brassica applied as sole or in combination for horse purslane (Trianthema portulacastrum) suppression was evaluated in a pot investigation. Chopped crop residues alone and in combination were incorporated at 6 g kg-1 soil (12 t ha-1), and a weedy check was maintained. Germination traits time to start germination; time to 50% emergence, mean emergence time, emergence index and final germination percentage were negatively influenced by residue incorporation. Crop residues also exerted a pronounced negative influence on the shoot and root length of horse purslane. Significant suppression in leaf and root score and leaf area per plant was also observed. A combination of sorghum and sunflower residues accounted for maximum (71%) seedling mortality. Soil incorporation of allelopathic crop residues can be employed for horse purslane management.
Resumo:
Trianthema portulacastrum is a very problematic summer crop weed and a complete crop failure has been observed because of this weed at high density. The effect of different ecological factors on germination of T. portulacastrum seeds collected in two different years (2009 and 2005) was studied in laboratory experiments. An increase in temperature from 25 to 35 ºC increased germination percentage of T. portulacastrum from 65 to 85%, after which germination started to decrease, reducing to 71.25% at 45 ºC. Trianthema portulacastrum had maximum germination with distilled water compared with different salt solutions and drought stress levels. Germination was significantly minimum at salinity and drought stress level of 250 mM and -0.8 MPa, respectively. Emergence of T. portulacastrum was maximum (86.25%) at 100% field capacity level but decreased sharply as field capacity decreased thereafter, and minimum emergence (30%) was recorded at field capacity level of 25%. Germination of T. portulacastrum was lowest at pH 5 and any increase in pH resulted in increased germination. A pH range of 8 to 10 had statistically similar germination. Sowing depth of 6 cm reduced the emergence of T. portulacastrum to zero. Reduction in emergence was recorded with depth increase from zero to 5 cm. Maximum emergence was recorded from soil surface (0 cm). An increase in temperature, salinity, drought, sowing depth (up to 4 cm) and a decrease in field capacity increased time to start germination/emergence, time to 50% germination/emergence and mean germination/emergence time but decreased germination/emergence index. Seeds collected during 2009 gave higher germination than old seeds collected in 2005. This information might contribute to development of effective control of T. portulacastrum.
Resumo:
In the last two centuries, papers have been published including measurements of the germination process. High diversity of mathematical expressions has made comparisons between papers and some times the interpretation of results difficult. Thus, in this paper is included a review about measurements of the germination process, with an analysis of the several mathematical expressions included in the specific literature, recovering the history, sense, and limitations of some germination measurements. Among the measurements included in this paper are the germinability, germination time, coefficient of uniformity of germination (CUG), coefficient of variation of the germination time (CVt), germination rate (mean rate, weighted mean rate, coefficient of velocity, germination rate of George, Timsons index, GV or Czabators index; Throneberry and Smiths method and its adaptations, including Maguires rate; ERI or emergence rate index, germination index, and its modifications), uncertainty associated to the distribution of the relative frequency of germination (U), and synchronization index (Z). The limits of the germination measurements were included to make the interpretation and decisions during comparisons easier. Time, rate, homogeneity, and synchrony are aspects that can be measured, informing the dynamics of the germination process. These characteristics are important not only for physiologists and seed technologists, but also for ecologists because it is possible to predict the degree of successful of a species based on the capacity of their harvest seed to spread the germination through time, permitting the recruitment in the environment of some part of the seedlings formed.
Resumo:
The residence time distribution and mean residence time of a 10% sodium bicarbonate solution that is dried in a conventional spouted bed with inert bodies were measured with the stimulus-response method. Methylene blue was used as a chemical tracer, and the effects of the paste feed mode, size distribution of the inert bodies, and mean particle size on the residence times and dried powder properties were investigated. The results showed that the residence time distributions could be best reproduced with the perfect mixing cell model or N = 1 for the continuous stirred tank reactor in a series model. The mean residence times ranged from 6.04 to 12.90 min and were significantly affected by the factors studied. Analysis of variance on the experimental data showed that mean residence times were affected by the mean diameter of the inert bodies at a significance level of 1% and by the size distribution at a level of 5%. Moreover, altering the paste feed from dripping to pneumatic atomization affected mean residence time at a 5% significance level. The dried powder characteristics proved to be adequate for further industrial manipulation, as demonstrated by the low moisture content, narrow range of particle size, and good flow properties. The results of this research are significant in the study of the drying of heat-sensitive materials because it shows that by simultaneously changing the size distribution and average size of the inert bodies, the mean residence times of a paste can be reduced by half, thus decreasing losses due to degradation.
Resumo:
Predicted area under curve (AUC), mean transit time (MTT) and normalized variance (CV2) data have been compared for parent compound and generated metabolite following an impulse input into the liver, Models studied were the well-stirred (tank) model, tube model, a distributed tube model, dispersion model (Danckwerts and mixed boundary conditions) and tanks-in-series model. It is well known that discrimination between models for a parent solute is greatest when the parent solute is highly extracted by the liver. With the metabolite, greatest model differences for MTT and CV2 occur when parent solute is poorly extracted. In all cases the predictions of the distributed tube, dispersion, and tasks-in-series models are between the predictions of the rank and tube models. The dispersion model with mixed boundary conditions yields identical predictions to those for the distributed tube model (assuming an inverse gaussian distribution of tube transit times). The dispersion model with Danckwerts boundary conditions and the tanks-in series models give similar predictions to the dispersion (mixed boundary conditions) and the distributed tube. The normalized variance for parent compound is dependent upon hepatocyte permeability only within a distinct range of permeability values. This range is similar for each model but the order of magnitude predicted for normalized variance is model dependent. Only for a one-compartment system is the MIT for generated metabolite equal to the sum of MTTs for the parent compound and preformed metabolite administered as parent.
Resumo:
Latitudinal clines provide natural systems that may allow the effect of natural selection on the genetic variance to be determined. Ten clinal populations of Drosophila serrata collected from the eastern coast of Australia were used to examine clinal patterns in the trait mean and genetic variance of the life-history trait egg-to-adult development time. Development time significantly lengthened from tropical areas to temperate areas. The additive genetic variance for development time in each population was not associated with latitude but was associated with the population mean development time. Additive genetic variance tended to be larger in populations with more extreme development times and appeared to be consistent with allele frequency change. In contrast, the nonadditive genetic variance was not associated with the population mean but was associated with latitude. Levels of nonadditive genetic variance were greatest in the region of the cline where the gradient in the change in mean was greatest, consistent with Barton's (1999) conjecture that the generation of linkage disequilibrium may become an important component of the genetic variance in systems with a spatially varying optimum.
Resumo:
This study was carried out to investigate the effects of light spectra, additional UV-A, and different growth regulators on the in vitro germination of Senecio cineraria DC. Seeds were surface-sterilized and inoculated in MS medium to evaluate the following light spectra: white, white plus UV-A, blue, green, red or darkness. The maximum germinability was obtained using MS0 medium under white light (30%) and MS + 0.3 mg L-1 GA3 in the absence of light (30.5%). S. cineraria seeds were indifferent to light. Blue and green lights inhibited germination. Different concentrations of gibberellic acid (GA3) (0.1; 0.4; 0.6; 0.8; 1.0 and 2.0 mg L-1) and indole-3-acetic acid IAA (0.1; 0.3 and 1.0 mg L-1) were evaluated under white light and darkness. No concentration of GA3 enhanced seed germination percentage under white light. However, when the seeds were maintained in darkness, GA3 improved germination responses in all tested concentrations, except at 1.0 mg L-1. Under white light, these concentrations also increased the germination time and reduced germination rate. Germination rate, under light or darkness, was lower using IAA compared with GA3.
Resumo:
The study of agent diffusion in biological tissues is very important to understand and characterize the optical clearing effects and mechanisms involved: tissue dehydration and refractive index matching. From measurements made to study the optical clearing, it is obvious that light scattering is reduced and that the optical properties of the tissue are controlled in the process. On the other hand, optical measurements do not allow direct determination of the diffusion properties of the agent in the tissue and some calculations are necessary to estimate those properties. This fact is imposed by the occurrence of two fluxes at optical clearing: water typically directed out of and agent directed into the tissue. When the water content in the immersion solution is approximately the same as the free water content of the tissue, a balance is established for water and the agent flux dominates. To prove this concept experimentally, we have measured the collimated transmittance of skeletal muscle samples under treatment with aqueous solutions containing different concentrations of glucose. After estimating the mean diffusion time values for each of the treatments we have represented those values as a function of glucose concentration in solution. Such a representation presents a maximum diffusion time for a water content in solution equal to the tissue free water content. Such a maximum represents the real diffusion time of glucose in the muscle and with this value we could calculate the corresponding diffusion coefficient.
Resumo:
BACKGROUND: In vitro aggregating brain cell cultures containing all types of brain cells have been shown to be useful for neurotoxicological investigations. The cultures are used for the detection of nervous system-specific effects of compounds by measuring multiple endpoints, including changes in enzyme activities. Concentration-dependent neurotoxicity is determined at several time points. METHODS: A Markov model was set up to describe the dynamics of brain cell populations exposed to potentially neurotoxic compounds. Brain cells were assumed to be either in a healthy or stressed state, with only stressed cells being susceptible to cell death. Cells may have switched between these states or died with concentration-dependent transition rates. Since cell numbers were not directly measurable, intracellular lactate dehydrogenase (LDH) activity was used as a surrogate. Assuming that changes in cell numbers are proportional to changes in intracellular LDH activity, stochastic enzyme activity models were derived. Maximum likelihood and least squares regression techniques were applied for estimation of the transition rates. Likelihood ratio tests were performed to test hypotheses about the transition rates. Simulation studies were used to investigate the performance of the transition rate estimators and to analyze the error rates of the likelihood ratio tests. The stochastic time-concentration activity model was applied to intracellular LDH activity measurements after 7 and 14 days of continuous exposure to propofol. The model describes transitions from healthy to stressed cells and from stressed cells to death. RESULTS: The model predicted that propofol would affect stressed cells more than healthy cells. Increasing propofol concentration from 10 to 100 μM reduced the mean waiting time for transition to the stressed state by 50%, from 14 to 7 days, whereas the mean duration to cellular death reduced more dramatically from 2.7 days to 6.5 hours. CONCLUSION: The proposed stochastic modeling approach can be used to discriminate between different biological hypotheses regarding the effect of a compound on the transition rates. The effects of different compounds on the transition rate estimates can be quantitatively compared. Data can be extrapolated at late measurement time points to investigate whether costs and time-consuming long-term experiments could possibly be eliminated.
Resumo:
Germination experiments were performed with seeds of two species of genus Allium section Allium, a rare and endangered species A. pyrenaicum and a common A. sphaerocephalon. Different pre-treatments and a photoperiod of 24 h darkness were applied in order to simulate different germination conditions. Both species showed a high percentage of viable seeds a part of which were dormant. An elevate percentage of dormant seeds could be caused by a later collection time. Low altitude populations had more mortality than the others, possibly caused by the hard summer conditions during flowering and fruiting time. Comparisons between dates of species coexistence localities only show inter-population variability and it could be caused by the detected dormancy. Darkness accelerates germination, possibly for elongation radicle stimulation. Heat-shock pre-treatments decreased germination time in seeds from localities where fire is a probable event. The rarity of A. Pyrenaicum not seems to be caused by restricted germination requirements but is attributable to distinct habitat preferences, related to his altitudinal range of distribution
Resumo:
Background: The 2007 European Crohn's and Colitis Organization guidelines on anemia in inflammatory bowel disease (IBD) favour intravenous (iv) over oral (po) iron supplementation due to better effectiveness and tolerance. We aimed to determine the percentage of IBD patients under iron supplementation therapy and the dynamics of prescription habits (iv versus po) over time. Methods: Helsana, a leading Swiss health insurance company provides coverage for approximately 18% of the Swiss population, corresponding to about 1.2 million enrollees. Patients with Crohn's disease (CD) and ulcerative colitis (UC) were analyzed from the anonymised Helsana database. Results: In total, 629 CD (61% female) and 398 UC (57% female) patients were identified, mean observation time was 31.8 months for CD and 31.0 months for UC patients. Of the entire study population, 27.1% were prescribed iron (21.1% in males and 31.1% in females). Patients treated with IBDspecific drugs (steroids, immunomodulators, anti-TNF agents) were more frequently treated with iron compared to patients without any medication (35.0% vs. 20.9%, OR 1.91, 95%- CI 1.41 2.61). The prescription of iv iron increased from 2006/2007 (48.8% of all patients receiving any iron priscription) to 65.2% in 2008/2009 by a factor of 1.89. Conclusions: One third of the IBD population was treated with iron supplementation. A gradual shift from oral to iv iron was observed over time. This switch in prescription habits goes along with the implementation of the ECCO consensus guidelines on anemia in IBD.
Exact solution to the exit-time problem for an undamped free particle driven by Gaussian white noise
Resumo:
In a recent paper [Phys. Rev. Lett. 75, 189 (1995)] we have presented the exact analytical expression for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise out of a region (0,L) in space. In this paper we give a detailed account of the method employed and present results on asymptotic properties and averages of T(x,v).