947 resultados para maximum principle


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a weak maximum principle for optimal control problems involving mixed constraints and pointwise set control constraints. Notably such result holds for problems with possibly nonsmooth mixed constraints. Although the setback of such result resides on a convexity assumption on the extended velocity set, we show that if the number of mixed constraints is one, such convexity assumption may be removed when an interiority assumption holds. © 2008 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work considers nonsmooth optimal control problems and provides two new sufficient conditions of optimality. The first condition involves the Lagrange multipliers while the second does not. We show that under the first new condition all processes satisfying the Pontryagin Maximum Principle (called MP-processes) are optimal. Conversely, we prove that optimal control problems in which every MP-process is optimal necessarily obey our first optimality condition. The second condition is more natural, but it is only applicable to normal problems and the converse holds just for smooth problems. Nevertheless, it is proved that for the class of normal smooth optimal control problems the two conditions are equivalent. Some examples illustrating the features of these sufficient concepts are presented. © 2012 Springer Science+Business Media New York.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article we introduce the concept of MP-pseudoinvexity for general nonlinear impulsive optimal control problems whose dynamics are specified by measure driven control equations. This is a general paradigm in that, both the absolutely continuous and singular components of the dynamics depend on both the state and the control variables. The key result consists in showing the sufficiency for optimality of the MP-pseudoinvexity. It is proved that, if this property holds, then every process satisfying the maximum principle is an optimal one. This result is obtained in the context of a proper solution concept that will be presented and discussed. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An optimal control framework to support the management and control of resources in a wide range of problems arising in agriculture is discussed. Lessons extracted from past research on the weed control problem and a survey of a vast body of pertinent literature led to the specification of key requirements to be met by a suitable optimization framework. The proposed layered control structure—including planning, coordination, and execution layers—relies on a set of nested optimization processes of which an “infinite horizon” Model Predictive Control scheme plays a key role in planning and coordination. Some challenges and recent results on the Pontryagin Maximum Principle for infinite horizon optimal control are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some problems of Calculus of Variations do not have solutions in the class of classic continuous and smooth arcs. This suggests the need of a relaxation or extension of the problem ensuring the existence of a solution in some enlarged class of arcs. This work aims at the development of an extension for a more general optimal control problem with nonlinear control dynamics in which the control function takes values in some closed, but not necessarily bounded, set. To achieve this goal, we exploit the approach of R.V. Gamkrelidze based on the generalized controls, but related to discontinuous arcs. This leads to the notion of generalized impulsive control. The proposed extension links various approaches on the issue of extension found in the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this dissertation is to prove that the Dirichlet problem in a bounded domain is uniquely solvable for elliptic equations in divergence form. The proof can be achieved by Hilbert space methods based on generalized or weak solutions. Existence and uniqueness of a generalized solution for the Dirichlet problem follow from the Fredholm alternative and weak maximum principle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The self-regeneration capacity of articular cartilage is limited, due to its avascular and aneural nature. Loaded explants and cell cultures demonstrated that chondrocyte metabolism can be regulated via physiologic loading. However, the explicit ranges of mechanical stimuli that correspond to favourable metabolic response associated with extracellular matrix (ECM) synthesis are elusive. Unsystematic protocols lacking this knowledge produce inconsistent results. This study aims to determine the intrinsic ranges of physical stimuli that increase ECM synthesis and simultaneously inhibit nitric oxide (NO) production in chondrocyte-agarose constructs, by numerically re-evaluating the experiments performed by Tsuang et al. (2008). Twelve loading patterns were simulated with poro-elastic finite element models in ABAQUS. Pressure on solid matrix, von Mises stress, maximum principle stress and pore pressure were selected as intrinsic mechanical stimuli. Their development rates and magnitudes at the steady state of cyclic loading were calculated with MATLAB at the construct level. Concurrent increase in glycosaminoglycan and collagen was observed at 2300 Pa pressure and 40 Pa/s pressure rate. Between 0-1500 Pa and 0-40 Pa/s, NO production was consistently positive with respect to controls, whereas ECM synthesis was negative in the same range. A linear correlation was found between pressure rate and NO production (R = 0.77). Stress states identified in this study are generic and could be used to develop predictive algorithms for matrix production in agarose-chondrocyte constructs of arbitrary shape, size and agarose concentration. They could also be helpful to increase the efficacy of loading protocols for avascular tissue engineering. Copyright (c) 2010 John Wiley \& Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The focal point of this paper is to propose and analyze a P 0 discontinuous Galerkin (DG) formulation for image denoising. The scheme is based on a total variation approach which has been applied successfully in previous papers on image processing. The main idea of the new scheme is to model the restoration process in terms of a discrete energy minimization problem and to derive a corresponding DG variational formulation. Furthermore, we will prove that the method exhibits a unique solution and that a natural maximum principle holds. In addition, a number of examples illustrate the effectiveness of the method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La evaluación de la seguridad de estructuras antiguas de fábrica es un problema abierto.El material es heterogéneo y anisótropo, el estado previo de tensiones difícil de conocer y las condiciones de contorno inciertas. A comienzos de los años 50 se demostró que el análisis límite era aplicable a este tipo de estructuras, considerándose desde entonces como una herramienta adecuada. En los casos en los que no se produce deslizamiento la aplicación de los teoremas del análisis límite estándar constituye una herramienta formidable por su simplicidad y robustez. No es necesario conocer el estado real de tensiones. Basta con encontrar cualquier solución de equilibrio, y que satisfaga las condiciones de límite del material, en la seguridad de que su carga será igual o inferior a la carga real de inicio de colapso. Además esta carga de inicio de colapso es única (teorema de la unicidad) y se puede obtener como el óptimo de uno cualquiera entre un par de programas matemáticos convexos duales. Sin embargo, cuando puedan existir mecanismos de inicio de colapso que impliquen deslizamientos, cualquier solución debe satisfacer tanto las restricciones estáticas como las cinemáticas, así como un tipo especial de restricciones disyuntivas que ligan las anteriores y que pueden plantearse como de complementariedad. En este último caso no está asegurada la existencia de una solución única, por lo que es necesaria la búsqueda de otros métodos para tratar la incertidumbre asociada a su multiplicidad. En los últimos años, la investigación se ha centrado en la búsqueda de un mínimo absoluto por debajo del cual el colapso sea imposible. Este método es fácil de plantear desde el punto de vista matemático, pero intratable computacionalmente, debido a las restricciones de complementariedad 0 y z 0 que no son ni convexas ni suaves. El problema de decisión resultante es de complejidad computacional No determinista Polinomial (NP)- completo y el problema de optimización global NP-difícil. A pesar de ello, obtener una solución (sin garantía de exito) es un problema asequible. La presente tesis propone resolver el problema mediante Programación Lineal Secuencial, aprovechando las especiales características de las restricciones de complementariedad, que escritas en forma bilineal son del tipo y z = 0; y 0; z 0 , y aprovechando que el error de complementariedad (en forma bilineal) es una función de penalización exacta. Pero cuando se trata de encontrar la peor solución, el problema de optimización global equivalente es intratable (NP-difícil). Además, en tanto no se demuestre la existencia de un principio de máximo o mínimo, existe la duda de que el esfuerzo empleado en aproximar este mínimo esté justificado. En el capítulo 5, se propone hallar la distribución de frecuencias del factor de carga, para todas las soluciones de inicio de colapso posibles, sobre un sencillo ejemplo. Para ello, se realiza un muestreo de soluciones mediante el método de Monte Carlo, utilizando como contraste un método exacto de computación de politopos. El objetivo final es plantear hasta que punto está justificada la busqueda del mínimo absoluto y proponer un método alternativo de evaluación de la seguridad basado en probabilidades. Las distribuciones de frecuencias, de los factores de carga correspondientes a las soluciones de inicio de colapso obtenidas para el caso estudiado, muestran que tanto el valor máximo como el mínimo de los factores de carga son muy infrecuentes, y tanto más, cuanto más perfecto y contínuo es el contacto. Los resultados obtenidos confirman el interés de desarrollar nuevos métodos probabilistas. En el capítulo 6, se propone un método de este tipo basado en la obtención de múltiples soluciones, desde puntos de partida aleatorios y calificando los resultados mediante la Estadística de Orden. El propósito es determinar la probabilidad de inicio de colapso para cada solución.El método se aplica (de acuerdo a la reducción de expectativas propuesta por la Optimización Ordinal) para obtener una solución que se encuentre en un porcentaje determinado de las peores. Finalmente, en el capítulo 7, se proponen métodos híbridos, incorporando metaheurísticas, para los casos en que la búsqueda del mínimo global esté justificada. Abstract Safety assessment of the historic masonry structures is an open problem. The material is heterogeneous and anisotropic, the previous state of stress is hard to know and the boundary conditions are uncertain. In the early 50's it was proven that limit analysis was applicable to this kind of structures, being considered a suitable tool since then. In cases where no slip occurs, the application of the standard limit analysis theorems constitutes an excellent tool due to its simplicity and robustness. It is enough find any equilibrium solution which satisfy the limit constraints of the material. As we are certain that this load will be equal to or less than the actual load of the onset of collapse, it is not necessary to know the actual stresses state. Furthermore this load for the onset of collapse is unique (uniqueness theorem), and it can be obtained as the optimal from any of two mathematical convex duals programs However, if the mechanisms of the onset of collapse involve sliding, any solution must satisfy both static and kinematic constraints, and also a special kind of disjunctive constraints linking the previous ones, which can be formulated as complementarity constraints. In the latter case, it is not guaranted the existence of a single solution, so it is necessary to look for other ways to treat the uncertainty associated with its multiplicity. In recent years, research has been focused on finding an absolute minimum below which collapse is impossible. This method is easy to set from a mathematical point of view, but computationally intractable. This is due to the complementarity constraints 0 y z 0 , which are neither convex nor smooth. The computational complexity of the resulting decision problem is "Not-deterministic Polynomialcomplete" (NP-complete), and the corresponding global optimization problem is NP-hard. However, obtaining a solution (success is not guaranteed) is an affordable problem. This thesis proposes solve that problem through Successive Linear Programming: taking advantage of the special characteristics of complementarity constraints, which written in bilinear form are y z = 0; y 0; z 0 ; and taking advantage of the fact that the complementarity error (bilinear form) is an exact penalty function. But when it comes to finding the worst solution, the (equivalent) global optimization problem is intractable (NP-hard). Furthermore, until a minimum or maximum principle is not demonstrated, it is questionable that the effort expended in approximating this minimum is justified. XIV In chapter 5, it is proposed find the frequency distribution of the load factor, for all possible solutions of the onset of collapse, on a simple example. For this purpose, a Monte Carlo sampling of solutions is performed using a contrast method "exact computation of polytopes". The ultimate goal is to determine to which extent the search of the global minimum is justified, and to propose an alternative approach to safety assessment based on probabilities. The frequency distributions for the case study show that both the maximum and the minimum load factors are very infrequent, especially when the contact gets more perfect and more continuous. The results indicates the interest of developing new probabilistic methods. In Chapter 6, is proposed a method based on multiple solutions obtained from random starting points, and qualifying the results through Order Statistics. The purpose is to determine the probability for each solution of the onset of collapse. The method is applied (according to expectations reduction given by the Ordinal Optimization) to obtain a solution that is in a certain percentage of the worst. Finally, in Chapter 7, hybrid methods incorporating metaheuristics are proposed for cases in which the search for the global minimum is justified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we study a system of partial differential equations describing the evolution of a population under chemotactic effects with non-local reaction terms. We consider an external application of chemoattractant in the system and study the cases of one and two populations in competition. By introducing global competitive/cooperative factors in terms of the total mass of the populations, weobtain, forarangeofparameters, thatanysolutionwithpositive and bounded initial data converges to a spatially homogeneous state with positive components. The proofs rely on the maximum principle for spatially homogeneous sub- and super-solutions.