935 resultados para marine species introductions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"June, 1994"--P. [6].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Concentrations of brominated flame retardants (BFRs) are reported to increase in marine ecosystems. OBJECTIVES: Characterize exposure to BFRs in animals from different trophic levels in North-East Atlantic coastal marine ecosystems along a latitudinal gradient from southern Norway to Spitsbergen, Svalbard, in the Arctic. Calanoid species were collected from the Oslofjord (59°N), Froan (64°N), and Spitsbergen (> 78°N); Atlantic cod (Gadus morhua) from the Oslofjord and Froan; polar cod (Boreogadus saida) from Bear Island (74°N) and Spitsbergen; harbor seal (Phoca vitulina) from the Oslofjord, Froan, and Spitsbergen; and ringed seal (Phoca vitulina) from Spitsbergen. Eggs of common tern (Sterna hirundo) were collected from the Oslofjord, and eggs of arctic terns (Sterna paradisaea) from Froan and Spitsbergen. RESULTS: Levels of polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCD) generally decreased as a function of increasing latitude, reflecting distance from release sources. The clear latitudinal decrease in levels of BFRs was not pronounced in the two tern species, most likely because they are exposed during migration. The decabrominated compound BDE-209 was detected in animals from all three ecosystems, and the highest levels were found in arctic tern eggs from Spitsbergen. HBCD was found in animals from all trophic levels, except for in calanoids at Froan and Spitsbergen. CONCLUSIONS: Even though the levels of PBDEs and HBCD are generally low in North-East Atlantic coastal marine ecosystems, there are concerns about the relatively high presence of BDE-209 and HBCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seafood products fraud, the misrepresentation of them, have been discovered all around the world in different forms as false labeling, species substitution, short-weighting or over glazing in order to hide the correct identity, origin or weight of the seafood products. Due to the value of seafood products such as canned tuna, swordfish or grouper, these species are the subject of the commercial fraud is mainly there placement of valuable species with other little or no value species. A similar situation occurs with the shelled shrimp or shellfish that are reduced into pieces for the commercialization. Food fraud by species substitution is an emerging risk given the increasingly global food supply chain and the potential food safety issues. Economic food fraud is committed when food is deliberately placed on the market, for financial gain deceiving consumers (Woolfe, M. & Primrose, S. 2004). As a result of the increased demand and the globalization of the seafood supply, more fish species are encountered in the market. In this scenary, it becomes essential to unequivocally identify the species. The traditional taxonomy, based primarily on identification keys of species, has shown a number of limitations in the use of the distinctive features in many animal taxa, amplified when fish, crustacean or shellfish are commercially transformed. Many fish species show a similar texture, thus the certification of fish products is particularly important when fishes have undergone procedures which affect the overall anatomical structure, such as heading, slicing or filleting (Marko et al., 2004). The absence of morphological traits, a main characteristic usually used to identify animal species, represents a challenge and molecular identification methods are required. Among them, DNA-based methods are more frequently employed for food authentication (Lockley & Bardsley, 2000). In addition to food authentication and traceability, studies of taxonomy, population and conservation genetics as well as analysis of dietary habits and prey selection, also rely on genetic analyses including the DNA barcoding technology (Arroyave & Stiassny, 2014; Galimberti et al., 2013; Mafra, Ferreira, & Oliveira, 2008; Nicolé et al., 2012; Rasmussen & Morrissey, 2008), consisting in PCR amplification and sequencing of a COI mitochondrial gene specific region. The system proposed by P. Hebert et al. (2003) locates inside the mitochondrial COI gene (cytochrome oxidase subunit I) the bioidentification system useful in taxonomic identification of species (Lo Brutto et al., 2007). The COI region, used for genetic identification - DNA barcode - is short enough to allow, with the current technology, to decode sequence (the pairs of nucleotide bases) in a single step. Despite, this region only represents a tiny fraction of the mitochondrial DNA content in each cell, the COI region has sufficient variability to distinguish the majority of species among them (Biondo et al. 2016). This technique has been already employed to address the demand of assessing the actual identity and/or provenance of marketed products, as well as to unmask mislabelling and fraudulent substitutions, difficult to detect especially in manufactured seafood (Barbuto et al., 2010; Galimberti et al., 2013; Filonzi, Chiesa, Vaghi, & Nonnis Marzano, 2010). Nowadays,the research concerns the use of genetic markers to identify not only the species and/or varieties of fish, but also to identify molecular characters able to trace the origin and to provide an effective control tool forproducers and consumers as a supply chain in agreementwith local regulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this field guide is to provide information on nonindigenous (i.e., non-native) fishes that have been observed in Florida’s marine waters. Introductions of non-native marine fishes into Florida’s waters could be intentional or unintentional, and are likely from a variety of sources, including aquarium releases, escape from aquaculture, loss due to extreme weather events (e.g., flooding from hurricanes), and possibly transfer with ballast water or hull-fouling. Presently the lionfishes (Pterois volitans and P. miles) are the only non-native marine fish species known to be established along the coast of Florida. All other marine fishes in this guide (except the euryhaline species, see below) have infrequent occurrences, occur singly or in small groups, and have not yet become self-sustaining populations. Aquarium releases are one of the major pathways whereby nonindigenous fishes gain access to new environments (Ruiz et al. 1997; Fuller et al. 1999). Most of the nonindigenous marine fishes found in Florida’s waters are thought to be aquarium fishes that either were illegally released into the ocean or escaped captivity (e.g., during severe storm/flooding events). Indeed, south Florida is a hotspot for nonindigenous marine aquarium fishes (Semmens et al. 2004). Increased public awareness of the problems caused by released or escaped aquarium fishes may aid in stemming the frequency of releases. For example, HabitattitudeTM (www.habitattitude.net) is a national public awareness and partnership campaign that encourages aquarists and water gardeners to prevent the release of unwanted aquarium plants, fish and other animals. It prompts hobbyists to adopt alternative actions when dealing with these aquatic plants and animals. (PDF file contains 133 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transfers and introductions of marine species have occurred and are occurring on a worldwide basis, largely in response to perceived needs of expanding aquaculture industries. Greatest interest is in salmon (cage rearing and ocean ranching), shrimp, and bivalve mollusks, although other organisms are being considered. Such movements of animals carry an associated risk of moving pathogens into areas where they did not occur previously, possibly resulting in infections in native species. Many case histories of the effects of introduced pathogens and parasites now exist-enough to suggest that national and international action is necessary. Viral pathogens of shrimp and salmon, as well as protozoan parasites of mollusks and nematode parasites of eels, have entered complex "transfer networks" developed by humans, and have been transported globally with their hosts in several well-documented instances. Examining the records of transfers and introductions of marine species, incomplete as they are, permits the statement of emerging principles-foremost of which is that severe disease outbreaks can result from inadequately controlled or uncontrolled movements of marine animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High level environmental screening study for offshore wind farm developments – marine habitats and species This report provides an awareness of the environmental issues related to marine habitats and species for developers and regulators of offshore wind farms. The information is also relevant to other offshore renewable energy developments. The marine habitats and species considered are those associated with the seabed, seabirds, and sea mammals. The report concludes that the following key ecological issues should be considered in the environmental assessment of offshore wind farms developments: • likely changes in benthic communities within the affected area and resultant indirect impacts on fish, populations and their predators such as seabirds and sea mammals; • potential changes to the hydrography and wave climate over a wide area, and potential changes to coastal processes and the ecology of the region; • likely effects on spawning or nursery areas of commercially important fish and shellfish species; • likely effects on mating and social behaviour in sea mammals, including migration routes; • likely effects on feeding water birds, seal pupping sites and damage of sensitive or important intertidal sites where cables come onshore; • potential displacement of fish, seabird and sea mammals from preferred habitats; • potential effects on species and habitats of marine natural heritage importance; • potential cumulative effects on seabirds, due to displacement of flight paths, and any mortality from bird strike, especially in sensitive rare or scarce species; • possible effects of electromagnetic fields on feeding behaviour and migration, especially in sharks and rays, and • potential marine conservation and biodiversity benefits of offshore wind farm developments as artificial reefs and 'no-take' zones. The report provides an especially detailed assessment of likely sensitivity of seabed species and habitats in the proposed development areas. Although sensitive to some of the factors created by wind farm developments, they mainly have a high recovery potential. The way in which survey data can be linked to Marine Life Information Network (MarLIN) sensitivity assessments to produce maps of sensitivity to factors is demonstrated. Assessing change to marine habitats and species as a result of wind farm developments has to take account of the natural variability of marine habitats, which might be high especially in shallow sediment biotopes. There are several reasons for such changes but physical disturbance of habitats and short-term climatic variability are likely to be especially important. Wind farm structures themselves will attract marine species including those that are attached to the towers and scour protection, fish that associate with offshore structures, and sea birds (especially sea duck) that may find food and shelter there. Nature conservation designations especially relevant to areas where wind farm might be developed are described and the larger areas are mapped. There are few designated sites that extend offshore to where wind farms are likely to be developed. However, cable routes and landfalls may especially impinge on designated sites. The criteria that have been developed to assess the likely marine natural heritage importance of a location or of the habitats and species that occur there can be applied to survey information to assess whether or not there is anything of particular marine natural heritage importance in a development area. A decision tree is presented that can be used to apply ‘duty of care’ principles to any proposed development. The potential ‘gains’ for the local environment are explored. Wind farms will enhance the biodiversity of areas, could act as refugia for fish, and could be developed in a way that encourages enhancement of fish stocks including shellfish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Europe, the last 20 years have seen a spectacular increase in accidental introductions of marine species, but it has recently been suggested that both the actual number of invaders and their impacts have been seriously underestimated because of the prevalence of sibling species in marine habitats. The red alga Polysiphoniaharveyi is regarded as an alien in the British Isles and Atlantic Europe, having appeared in various locations there during the past 170 years. Similar or conspecific populations are known from Atlantic North America and Japan. To choose between three competing hypotheses concerning the origin of P. harveyi in Europe, we employed rbcL sequence analysis in conjunction with karyological and interbreeding data for samples and isolates of P. harveyi and various congeners from the Pacific and North Atlantic Oceans. All cultured isolates of P. harveyi were completely interfertile, and there was no evidence of polyploidy or aneuploidy. Thus, this biological species is both morphologically and genetically variable: intraspecific rbcL divergences of up to 2.1% are high even for red algae. Seven rbcL haplotypes were identified. The four most divergent haplotypes were observed in Japanese samples from Hokkaido and south-central Honshu, which are linked by hypothetical 'missing' haplotypes that may be located in northern Honshu. These data are consistent with Japan being the centre of diversity and origin for P. harveyi. Two non-Japanese lineages were linked to Hokkaido and Honshu, respectively. A single haplotype was found in all North Atlantic and Mediterranean accessions, except for North Carolina, where the haplotype found was the same as that invading in New Zealand and California. The introduction of P. harveyi into New Zealand has gone unnoticed because P. strictissima is a morphologically indistinguishable native sibling species. The sequence divergence between them is 4–5%, greater than between some morphologically distinct red algal species. Two different types of cryptic invasions of P. harveyi have therefore occurred. In addition to its introduction as a cryptic sibling species in New Zealand, P. harveyi has been introduced at least twice into the North Atlantic from presumed different source populations. These two introductions are genetically and probably also physiologically divergent but completely interfertile.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents two algorithms to automate the detection of marine species in aerial imagery. An algorithm from an initial pilot study is presented in which morphology operations and colour analysis formed the basis of its working principle. A second approach is presented in which saturation channel and histogram-based shape profiling were used. We report on performance for both algorithms using datasets collected from an unmanned aerial system at an altitude of 1000 ft. Early results have demonstrated recall values of 48.57% and 51.4%, and precision values of 4.01% and 4.97%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aerial surveys conducted using manned or unmanned aircraft with customized camera payloads can generate a large number of images. Manual review of these images to extract data is prohibitive in terms of time and financial resources, thus providing strong incentive to automate this process using computer vision systems. There are potential applications for these automated systems in areas such as surveillance and monitoring, precision agriculture, law enforcement, asset inspection, and wildlife assessment. In this paper, we present an efficient machine learning system for automating the detection of marine species in aerial imagery. The effectiveness of our approach can be credited to the combination of a well-suited region proposal method and the use of Deep Convolutional Neural Networks (DCNNs). In comparison to previous algorithms designed for the same purpose, we have been able to dramatically improve recall to more than 80% and improve precision to 27% by using DCNNs as the core approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The East Indies triangle, bordered by the Phillipines, Malay Peninsula and New Guinea, has a high level of tropical marine species biodiversity. Pristipomoides multidens is a large, long-lived, fecund snapper species that is distributed throughout the East Indies and Indo-Pacific. Samples were analysed from central and eastern Indonesia and northern Australia to test for genetic discontinuities in population structure. Fish (n = 377) were collected from the Indonesian islands of Bali, Sumbawa, Flores, West Timor, Tanimbar and Tual along with 131 fish from two northern Australian locations (Arafura and Timor Seas) from a previous study. Genetic variation in the control region of the mitochondrial genome was assayed using restriction fragment length polymorphism and direct sequencing. Haplotype diversity was high (0.67-0.82), as was intraspecific sequence divergence (range 0-5.8%). FST between pairs of populations ranged from 0 to 0.2753. Genetic subdivision was apparent on a small spatial scale; FST was 0.16 over 191 km (Bali/Sumbawa) and 0.17 over 491 km (Bali/Flores). Constraints to dispersal that contribute to, and maintain, the observed degree of genetic subdivision are experienced presumably by all life history stages of this tropical marine finfish. The constraints may include (1) little or no movement of eggs or larvae, (2) little or no home range or migratory movement of adults and (3) loss of larval cohorts due to transport of larvae away from suitable habitat by prevailing currents