372 resultados para manifolds
Resumo:
We give simple formulas for the canonical metric, gradient, Lie derivative, Riemannian connection, parallel translation, geodesics and distance on the Grassmann manifold of p-planes in ℝn. In these formulas, p-planes are represented as the column space of n × p matrices. The Newton method on abstract Riemannian manifolds proposed by Smith is made explicit on the Grassmann manifold. Two applications - computing an invariant subspace of a matrix and the mean of subspaces - are worked out.
Resumo:
This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms.
Resumo:
This paper provides an introduction to the topic of optimization on manifolds. The approach taken uses the language of differential geometry, however,we choose to emphasise the intuition of the concepts and the structures that are important in generating practical numerical algorithms rather than the technical details of the formulation. There are a number of algorithms that can be applied to solve such problems and we discuss the steepest descent and Newton's method in some detail as well as referencing the more important of the other approaches.There are a wide range of potential applications that we are aware of, and we briefly discuss these applications, as well as explaining one or two in more detail. © 2010 Springer -Verlag Berlin Heidelberg.
Resumo:
Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design effcient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, independent component analysis, metric learning, dimensionality reduction and so on. The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented piece of software dedicated to simplify experimenting with state of the art Riemannian optimization algorithms. By dealing internally with most of the differential geometry, the package aims particularly at lowering the entrance barrier. © 2014 Nicolas Boumal.
Resumo:
The decomposition of Spin(c)(4) gauge potential in terms of the Dirac 4-spinor is investigated, where an important characterizing equation Delta A(mu) = -lambda A(mu) has been discovered. Here, lambda is the vacuum expectation value of the spinor field, lambda = parallel to Phi parallel to(2), and A(mu) the twisting U(1) potential. It is found that when), takes constant values, the characterizing equation becomes an eigenvalue problem of the Laplacian operator. It provides a revenue to determine the modulus of the spinor field by using the Laplacian spectral theory. The above study could be useful in determining the spinor field and twisting potential in the Seiberg-Witten equations. Moreover, topological characteristic numbers of instantons in the self-dual sub-space are also discussed.
Resumo:
This paper reports a systematic study of the dependence on atomic number of the dielectronic recombination resonance strengths for He-like, Li-like and Be-like ions. Recent measurements of dielectronic recombination resonance strengths for the KLL and KLM manifolds for iron, yttrium, iodine, holmium, and bismuth are also described. The resonance strengths were normalized to calculated electron impact ionization cross sections. The measured resonance strengths generally agree well with theoretical calculations using the distorted wave approximation. However, KLM resonance strength measurements on high atomic number open-shell ions gave higher values than those suggested by calculations. Using recently measured data, along with existing results, scaling laws have been generated as a function of atomic number for He-like, Li-like, and Be-like ions in the KLL and KLM manifolds.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
The =CH2 AND =CD2 stretching vibrational overtones of H2C=CD2 have been studied up to V= 6 and V= 3, respectively. We report their interpretation in terms of a transition from normal to local modes, involving Fermi resonance with the C=C stretching and CH2 scissoring vibrations. We discuss the alternative representation of the vibrational Hamiltonian matrix in local mode and normal mode basis functions, and conclude that the normal mode basis offers greater flexibility in representing small anharmonic couplings with other modes.
Resumo:
In this paper we extend the well-known Leinfelder–Simader theorem on the essential selfadjointness of singular Schrödinger operators to arbitrary complete Riemannian manifolds. This improves some earlier results of Shubin, Milatovic and others.
Resumo:
We study the inuence of the intrinsic curvature on the large time behaviour of the heat equation in a tubular neighbourhood of an unbounded geodesic in a two-dimensional Riemannian manifold. Since we consider killing boundary conditions, there is always an exponential-type decay for the heat semigroup. We show that this exponential-type decay is slower for positively curved manifolds comparing to the at case. As the main result, we establish a sharp extra polynomial-type decay for the heat semigroup on negatively curved manifolds comparing to the at case. The proof employs the existence of Hardy-type inequalities for the Dirichlet Laplacian in the tubular neighbourhoods on negatively curved manifolds and the method of self-similar variables and weighted Sobolev spaces for the heat equation.
Resumo:
We consider Anosov actions of R(k), k >= 2, on a closed connected orientable manifold M, of codimension one, i.e. such that the unstable foliation associated to some element of R(k) has dimension one. We prove that if the ambient manifold has dimension greater than k + 2, then the action is topologically transitive. This generalizes a result of Verjovsky for codimension-one Anosov flows.
Resumo:
We provide an affirmative answer to the C(r)-Closing Lemma, r >= 2, for a large class of flows defined on every closed surface.
Resumo:
We study the geometry of 3-manifolds generically embedded in R(n) by means of the analysis of the singularities of the distance-squared and height functions on them. We describe the local structure of the discriminant (associated to the distribution of asymptotic directions), the ridges and the flat ridges.