987 resultados para magnetic flux


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An understanding of how the heliosphere modulates galactic cosmic ray (GCR) fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earth’s environment and organisms) and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68- year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparison of various estimates of the open solar flux, deduced from measurements of the interplanetary magnetic field, from the aa geomagnetic index and from photospheric magnetic field observations. The first two of these estimates are made using the Ulysses discovery that the radial heliospheric field is approximately independent of heliographic latitude, the third makes use of the potential-field source surface method to map the total flux through the photosphere to the open flux at the top of the corona. The uncertainties associated with using the Ulysses result are 5%, but the effects of the assumptions of the potential field source surface method are harder to evaluate. Nevertheless, the three methods give similar results for the last three solar cycles when the data sets overlap. In 11-year running means, all three methods reveal that 1987 marked a significant peak in the long-term variation of the open solar flux. This peak is close to the solar minimum between sunspot cycles 21 and 22, and consequently the mean open flux (averaged from minimum to minimum) is similar for these two cycles. However, this similarity between cycles 21 and 22 in no way implies that the open flux is constant. The long-term variation shows that these cycles are fundamentally different in that the average open flux was rising during cycle 21 (from consistently lower values in cycle 20 and toward the peak in 1987) but was falling during cycle 22 (toward consistently lower values in cycle 23). The estimates from the geomagnetic aa index are unique as they extend from 1842 onwards (using the Helsinki extension). This variation gives strong anticorrelations, with very high statistical significance levels, with cosmic ray fluxes and with the abundances of the cosmogenic isotopes that they produce. Thus observations of photospheric magnetic fields, of cosmic ray fluxes, and of cosmogenic isotope abundances all support the long-term drifts in open solar flux reported by Lockwood et al. [1999a, 1999b].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the origin and evolution of the Sun’s open magnetic flux is considered by conducting magnetic flux transport simulations over many solar cycles. The simulations include the effects of differential rotation, meridional flow and supergranular diffusion on the radial magnetic field at the surface of the Sun as new magnetic bipoles emerge and are transported poleward. In each cycle the emergence of roughly 2100 bipoles is considered. The net open flux produced by the surface distribution is calculated by constructing potential coronal fields with a source surface from the surface distribution at regular intervals. In the simulations the net open magnetic flux closely follows the total dipole component at the source surface and evolves independently from the surface flux. The behaviour of the open flux is highly dependent on meridional flow and many observed features are reproduced by the model. However, when meridional flow is present at observed values the maximum value of the open flux occurs at cycle minimum when the polar caps it helps produce are the strongest. This is inconsistent with observations by Lockwood, Stamper and Wild (1999) and Wang, Sheeley, and Lean (2000) who find the open flux peaking 1–2 years after cycle maximum. Only in unrealistic simulations where meridional flow is much smaller than diffusion does a maximum in open flux consistent with observations occur. It is therefore deduced that there is no realistic parameter range of the flux transport variables that can produce the correct magnitude variation in open flux under the present approximations. As a result the present standard model does not contain the correct physics to describe the evolution of the Sun’s open magnetic flux over an entire solar cycle. Future possible improvements in modeling are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the origin and evolution of the Sun’s open magnetic flux are considered for single magnetic bipoles as they are transported across the Sun. The effects of magnetic flux transport on the radial field at the surface of the Sun are modeled numerically by developing earlier work by Wang, Sheeley, and Lean (2000). The paper considers how the initial tilt of the bipole axis (α) and its latitude of emergence affect the variation and magnitude of the surface and open magnetic flux. The amount of open magnetic flux is estimated by constructing potential coronal fields. It is found that the open flux may evolve independently from the surface field for certain ranges of the tilt angle. For a given tilt angle, the lower the latitude of emergence, the higher the magnitude of the surface and open flux at the end of the simulation. In addition, three types of behavior are found for the open flux depending on the initial tilt angle of the bipole axis. When the tilt is such that α ≥ 2◦ the open flux is independent of the surface flux and initially increases before decaying away. In contrast, for tilt angles in the range −16◦ < α < 2◦ the open flux follows the surface flux and continually decays. Finally, for α ≤ −16◦ the open flux first decays and then increases in magnitude towards a second maximum before decaying away. This behavior of the open flux can be explained in terms of two competing effects produced by differential rotation. Firstly, differential rotation may increase or decrease the open flux by rotating the centers of each polarity of the bipole at different rates when the axis has tilt. Secondly, it decreases the open flux by increasing the length of the polarity inversion line where flux cancellation occurs. The results suggest that, in order to reproduce a realistic model of the Sun’s open magnetic flux over a solar cycle, it is important to have accurate input data on the latitude of emergence of bipoles along with the variation of their tilt angles as the cycle progresses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We test the method of Lockwood et al. [1999] for deriving the coronal source flux from the geomagnetic aa index and show it to be accurate to within 12% for annual means and 4.5% for averages over a sunspot cycle. Using data from four solar constant monitors during 1981-1995, we find a linear relationship between this magnetic flux and the total solar irradiance. From this correlation, we show that the 131% rise in the mean coronal source field over the interval 1901-1995 corresponds to a rise in the average total solar irradiance of {\Delta}I = 1.65 +/- 0.23 Wm^{-2}.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combined observations by meridian-scanning photometers and the EISCAT radar show that the "midday-auroral breakup" phenomenon is associated with major increases in ionospheric flow. A sequence of nine events is observed in the early afternoon MLT sector during a period when the IMF is strongly southward with a large positive By component. Each auroral structure is seen at both 630 and 557.7nm and initially moves westward, accompanied by an increase in potential of 30-60kV across the north-south dimension of the EISCAT field-of-view. After a few minutes the arc (or arc fragment) moves into the polar cap and fades, and the velocities observed by the radar swing from westward toward northward. We conclude that dayside auroral breakup is closely associated with momentum transfer across the magnetopause which occurs in a series of events 5-15 minutes apart. The largest of the observed events has dimensions of about 300km (in the direction of westward motion) by 700km, is bounded on its poleward edge by a 5kR arc and is associated with a potential of at least 80kV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we analyse the vacuum polarization effects due to a magnetic flux on massless fermionic fields in a cosmic string background. Three distinct configurations of magnetic fields are considered. In all of them the magnetic fluxes are confined in a long cylindrical tube of finite radius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of magnetohydrodynamics (MHD) turbulence in astrophysical environments is still highly debated. An important question that permeates this debate is the transport of magnetic flux. This is particularly important, for instance, in the context of star formation. When clouds collapse gravitationally to form stars, there must be some magnetic flux transport. Otherwise, the newborn stars would have magnetic fields several orders of magnitude larger than the observed ones. Also, the magnetic flux that is dragged in the late stages of the formation of a star can remove all the rotational support from the accretion disc that grows around the protostar. The efficiency of the mechanism that is often invoked to allow transport of magnetic fields at different stages of star formation, namely ambipolar diffusion, has recently been put in check. We discuss here an alternative mechanism for magnetic flux transport which is based on turbulent fast magnetic reconnection. We review recent results from three-dimensional MHD numerical simulations that indicate that this mechanism is very efficient in decoupling and transporting magnetic flux from the inner denser regions to the outskirts of collapsing clouds at different stages of star formation. We discuss this mechanism also in the context of dynamo processes and speculate that it can play a role both in solar dynamo and in accretion disc dynamo processes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ellerman Bombs (EBs) are often found to be co-spatial with bipolar photospheric magnetic fields. We use Hα imaging spectroscopy along with Fe i 6302.5 Å spectropolarimetry from the Swedish 1 m Solar Telescope (SST), combined with data from the Solar Dynamic Observatory, to study EBs and the evolution of the local magnetic fields at EB locations. EBs are found via an EB detection and tracking algorithm. Using NICOLE inversions of the spectropolarimetric data, we find that, on average, (3.43 ± 0.49) × 1024 erg of stored magnetic energy disappears from the bipolar region during EB burning. The inversions also show flux cancellation rates of 1014–1015 Mx s‑1 and temperature enhancements of 200 K at the detection footpoints. We investigate the near-simultaneous flaring of EBs due to co-temporal flux emergence from a sunspot, which shows a decrease in transverse velocity when interacting with an existing, stationary area of opposite polarity magnetic flux, resulting in the formation of the EBs. We also show that these EBs can be fueled further by additional, faster moving, negative magnetic flux regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial distribution of the magnetic field and the coupling between the coils in the Wireless Power Transfer (WPT) systems is an important aspect to consider in the system design and efficiency optimization. The presented study in this paper is based on tests performed on a physical model. The transmitting (primary) equipment, is an electrical three-phase system, capable to be connected in star or delta (both electrically and geometrically). The measured results allow to describe graphically the magnetic field distribution in three dimensions. The analytical formulas aim to help to understand and to quantify the physical phenomena but they cannot be considered a universal approach and the measurement results help to understand better the observable facts. In the WPT, the key issues that will influence the efficiency, are the alignment of the coils, the spatial orientation of the magnetic field, the detachment and the tilt between the windings, all they changing the magnetic coupling between the transmitter and the receiver of energy. This research is directed not only to the magnetic field distribution but finally, to optimize the energy transfer efficiency.