1000 resultados para método de combustão
Resumo:
The occurrence of heavy oil reservoirs have increased substantially and, due to the high viscosity characteristic of this type of oil, conventional recovery methods can not be applied. Thermal methods have been studied for the recovery of this type of oil, with a main objective to reduce its viscosity, by increasing the reservoir temperature, favoring the mobility of the oil and allowing an increasing in the productivity rate of the fields. In situ combustion (ISC) is a thermal recovery method in which heat is produced inside the reservoir by the combustion of part of the oil with injected oxygen, contrasting with the injection of fluid that is heated in the surface for subsequent injection, which leads to loss heat during the trajectory to the reservoir. The ISC is a favorable method for recovery of heavy oil, but it is still difficult to be field implemented. This work had as an objective the parametric analysis of ISC process applied to a semi-synthetic reservoir with characteristics of the Brazilian Northeast reservoirs using vertical production and vertical injection wells, as the air flow injection and the wells completions. For the analysis, was used a commercial program for simulation of oil reservoirs using thermal processes, called Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from Computer Modelling Group (CMG). From the results it was possible to analyze the efficiency of the ISC process in heavy oil reservoirs by increasing the reservoir temperature, providing a large decrease in oil viscosity, increasing its mobility inside the reservoir, as well as the improvement in the quality of this oil and therefore increasing significantly its recovered fraction. Among the analyzed parameters, the flow rate of air injection was the one which had greater influence in ISC, obtaining higher recovery factor the higher is the flow rate of injection, due to the greater amount of oxygen while ensuring the maintenance of the combustion front
Resumo:
We developed an assay methodology that considered the temperature variation and the scanning electron microscopy as a method to quantify and characterize respectively the consumption evolution in three 46 LA machines, with internal combustion and two-stroke engines, 7.64 cm3 cylinder capacity, 23.0 millimeters diameter and 18.4 millimeters course, RPM service from 2.000 to 16.000 rpm, 1.2 HP power, and 272 grams weight. The investigated engines components were: (1) head of the engine (Al-Si alloy), (2) piston (Al-Si alloy) and (3) piston pin (AISI 52100 steel). The assays were carried out on a desktop; engines 1 and 2 were assayed with no load, whereas in two assays of engine 3 we added a fan with wind speed that varied from 8.10 m/s to 11.92 m/s, in order to identify and compare the engine dynamic behavior as related to the engines assayed with no load. The temperatures of the engine s surface and surroundings were measured by two type K thermopairs connected to the assay device and registered in a microcomputer with data recording and parameters control and monitoring software, throughout the assays. The consumed surface of the components was analyzed by scanning electron microscopy (SEM) and microanalysis-EDS. The study was complemented with shape deformation and mass measurement assays. The temperature variation was associated with the oxides morphology and the consumption mechanisms were discussed based on the relation between the thermal mechanical effects and the responses of the materials characterization
Resumo:
Este trabalho apresenta um método de produção para a obtenção de cinza de casca de arroz (CCA) de elevada reatividade a partir de um processo de combustão não controlado. São detalhados os processos de obtenção da CCA, assim como sua atividade pozolânica. Pela Análise Termogravimétrica (TGA), foi possível quantificar o consumo de portlandita por parte da CCA, ou seja, a reação pozolânica. Adicionalmente, foram preparadas argamassas com diferentes porcentagens de CCA (5%, 10% e 15%) com o objetivo de comprovar sua influência nas propriedades mecânicas. Os resultados obtidos mostram que a CCA em estudo apresenta elevada reatividade, podendo ser utilizada como uma fonte alternativa da sílica ativa (SA).
Resumo:
Perovskites oxides win importance by its properties and commercials applications, they have a high thermal stability, have conductive properties, electrical, catalytic, electro catalytic, optical and magnetic, and are thermally stable. Because of these properties, are being widely studied as carriers of oxygen in the process of power generation with CO2 capture. In this work, the base carrier system La1-xMexNiO3 (Me = Ca and Sr) were synthesized by the method via the combustion reaction assisted by microwave. were synthesized from the combustion reaction method by microwave process. This method control the synthesi`s conditions to obtain materials with specific characteristics. The carriers calcined at 800 ° C/2h were analyzed by thermal analysis (TG-DTA), to verify its thermal stability, X-ray diffraction (XRD) to verify the phase formation, with subsequent refinement by the Rietveld method, to quantify the percentage of phases formed, the surface area by BET method was determined, scanning electron microscopy (SEM) was obtained to evaluate the material morphology and temperature programmed reduction (TPR) was done to observe the metallic phase of the nickel. After all proposed characterization and analysis of their results can be inferred to these oxides, key features so that they can be applied as carriers for combustion reactions in chemical cycles. The final products showed perovskite-type structures K2NiF4 (main) and ABO3.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work aims to examine, the behavior of a combustion chamber in pilot scale, coupled to a regenerative burner. The objective is to obtain a computational domain capable of supporting a simulation of conventional combustion and flameless combustion regimes. The objective is to obtain independence of mesh, analysis of the velocity fields of the fluid within the chamber, temperature and concentration profiles of the species emitted during the combustion process
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2015.
Resumo:
The development and study of detectors sensitive to flammable combustible and toxic gases at low cost is a crucial technology challenge to enable marketable versions to the market in general. Solid state sensors are attractive for commercial purposes by the strength and lifetime, because it isn t consumed in the reaction with the gas. In parallel, the use of synthesis techniques more viable for the applicability on an industrial scale are more attractive to produce commercial products. In this context ceramics with spinel structure were obtained by microwave-assisted combustion for application to flammable fuel gas detectors. Additionally, alternatives organic-reducers were employed to study the influence of those in the synthesis process and the differences in performance and properties of the powders obtained. The organic- reducers were characterized by Thermogravimetry (TG) and Derivative Thermogravimetry (DTG). After synthesis, the samples were heat treated and characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), analysis by specific area by BET Method and Scanning Electron Microscopy (SEM). Quantification of phases and structural parameters were carried through Rietveld method. The methodology was effective to obtain Ni-Mn mixed oxides. The fuels influenced in obtaining spinel phase and morphology of the samples, however samples calcined at 950 °C there is just the spinel phase in the material regardless of the organic-reducer. Therefore, differences in performance are expected in technological applications when sample equal in phase but with different morphologies are tested
Resumo:
Oxide type spinel AB2O4 presents structure adjusted for application in the automobile industry. The spinel of cobalt has many practical applications had its excellent physical and chemical properties such as catalyst in hydrocarbon oxidation reaction. The CeO2 has been used in many of these processes because it assigns to a material with excellent thermal resistance and mechanics, high capacity of oxygen stockage (OSC) among others properties. This work deals with the synthesis, characterization and catalytic application of spinel of cobalt and CeO2 with fluorita structure, obtained for method of Pechini and method of Gel-Combustion. The process of Pechini, the puff was obtained at 300 ºC for 2 h in air. In the process of Gel-Combustion the approximately at 350 ºC material was prepared and burnt for Pyrolysis, both had been calcined at 500 ºC, 700 ºC, 900 ºC and 1050 ºC for 2 h in air. The materials of the calcinations had been characterized by TG/DTA, electronic microscopy of sweepings (MEV), spectroscopy of absorption in the infra-red ray (FTIR) and diffraction of X-rays (DRX). The obtained material reaches the phase oxide at 450 oC for Pechini method and 500 °C for combustion method. The samples were submitted catalytic reaction of n-hexane on superficies of materials. The reactor function in molar ration of 0, 85 mol.h-1.g-1 and temperature of system was 450 °C. The sample obtained for Pechini and support in alumine of superficial area of 178,63 m2.g-1 calcined at 700 ºC, give results of catalytic conversions of 39 % and the sample obtained for method of gel-combustion and support in alumina of 150 mesh calcined at 500 ºC result 13 % of conversion. Both method were selective specie C1
Resumo:
The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties
Resumo:
The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells as producers of oil, keeping vertical injection wells to inject air. This process has not yet been applied in Brazil, making it necessary, evaluation of these new technologies applied to local realities, therefore, this study aimed to perform a parametric study of the combustion process with in-situ oil production in horizontal wells, using a semi synthetic reservoir, with characteristics of the Brazilian Northeast basin. The simulations were performed in a commercial software "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), from CMG (Computer Modelling Group). The following operating parameters were analyzed: air rate, configuration of producer wells and oxygen concentration. A sensitivity study on cumulative oil (Np) was performed with the technique of experimental design, with a mixed model of two and three levels (32x22), a total of 36 runs. Also, it was done a technical economic estimative for each model of fluid. The results showed that injection rate was the most influence parameter on oil recovery, for both studied models, well arrangement depends on fluid model, and oxygen concentration favors recovery oil. The process can be profitable depends on air rate
Resumo:
Nearly 3 x 1011 m3 of medium and light oils will remain in reservoirs worldwide after conventional recovery methods have been exhausted and much of this volume would be recovered by Enhanced Oil Recovery (EOR) methods. The in-situ combustion (ISC) is an EOR method in which an oxygen-containing gas is injected into a reservoir where it reacts with the crude oil to create a high-temperature combustion front that is propagated through the reservoir. The High Pressure Air Injection (HPAI) method is a particular denomination of the air injection process applied in light oil reservoirs, for which the combustion reactions are dominant between 150 and 300°C and the generation of flue gas is the main factor to the oil displacement. A simulation model of a homogeneous reservoir was built to study, which was initially undergone to primary production, for 3 years, next by a waterflooding process for 21 more years. At this point, with the mature condition established into the reservoir, three variations of this model were selected, according to the recovery factors (RF) reached, for study the in-situ combustion (HPAI) technique. Next to this, a sensitivity analysis on the RF of characteristic operational parameters of the method was carried out: air injection rate per well, oxygen concentration into the injected gas, patterns of air injection and wells perforations configuration. This analysis, for 10 more years of production time, was performed with assistance of the central composite design. The reservoir behavior and the impacts of chemical reactions parameters and of reservoir particularities on the RF were also evaluated. An economic analysis and a study to maximize the RF of the process were also carried out. The simulation runs were performed in the simulator of thermal processes in reservoirs STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) from CMG (Computer Modelling Group). The results showed the incremental RF were small and the net present value (NPV) is affected by high initial investments to compress the air. It was noticed that the adoption of high oxygen concentration into the injected gas and of the five spot pattern tends to improve the RF, and the wells perforations configuration has more influence with the increase of the oil thickness. Simulated cases relating to the reservoir particularities showed that smaller residual oil saturations to gas lead to greater RF and the presence of heterogeneities results in important variations on the RF and on the production curves