983 resultados para lung infection
Resumo:
Burkholderia cenocepacia is an opportunistic bacterium that infects patients with cystic fibrosis. B. cenocepacia strains J2315, K56-2, C5424, and BC7 belong to the ET12 epidemic clone, which is transmissible among patients. We have previously shown that transposon mutants with insertions within the O antigen cluster of strain K56-2 are attenuated for survival in a rat model of lung infection. From the genomic DNA sequence of the O antigen-deficient strain J2315, we have identified an O antigen lipopolysaccharide (LPS) biosynthesis gene cluster that has an IS402 interrupting a predicted glycosyltransferase gene. A comparison with the other clonal isolates revealed that only strain K56-2, which produced O antigen and displayed serum resistance, lacked the insertion element inserted within the putative glycosyltransferase gene. We cloned the uninterrupted gene and additional flanking sequences from K56-2 and conjugated this plasmid into strains J2315, C5424, and BC7. All the exconjugants recovered the ability to form LPS O antigen. We also determined that the structure of the strain K56-2 O antigen repeat, which was absent from the LPS of strain J2315, consisted of a trisaccharide unit made of rhamnose and two N-acetylgalactosamine residues. The complexity of the gene organization of the K56-2 O antigen cluster was also investigated by reverse transcription-PCR, revealing several transcriptional units, one of which also contains genes involved in lipid A-core oligosaccharide biosynthesis.
Resumo:
Burkholderia cenocepacia (formerly Burkholderia cepacia complex genomovar III) causes chronic lung infections in patients with cystic fibrosis. In this work, we used a modified signature-tagged mutagenesis (STM) strategy for the isolation of B. cenocepacia mutants that cannot survive in vivo. Thirty-seven specialized plasposons, each carrying a unique oligonucleotide tag signature, were constructed and used to examine the survival of 2,627 B. cenocepacia transposon mutants, arranged in pools of 37 unique mutants, after a 10-day lung infection in rats by using the agar bead model. The recovered mutants were screened by real-time PCR, resulting in the identification of 260 mutants which presumably did not survive within the lungs. These mutants were repooled into smaller pools, and the infections were repeated. After a second screen, we isolated 102 mutants unable to survive in the rat model. The location of the transposon in each of these mutants was mapped within the B. cenocepacia chromosomes. We identified mutations in genes involved in cellular metabolism, global regulation, DNA replication and repair, and those encoding bacterial surface structures, including transmembrane proteins and cell surface polysaccharides. Also, we found 18 genes of unknown function, which are conserved in other bacteria. A subset of 12 representative mutants that were individually examined using the rat model in competition with the wild-type strain displayed reduced survival, confirming the predictive value of our STM screen. This study provides a blueprint to investigate at the molecular level the basis for survival and persistence of B. cenocepacia within the airways.
Resumo:
Although cystic fibrosis pulmonary infection is polymicrobial, routine laboratory methods focus on the detection of a small number of known pathogens. Recently, the use of strict anaerobic culture techniques and molecular technologies have identified other potential pathogens including anaerobic bacteria. Determining the role of all bacteria in a complex bacterial community and how they interact is extremely important; individual bacteria may affect how the community develops, possess virulence factors, produce quorum-sensing signals, stimulate an immune response or transfer antibiotic resistance genes, which could all contribute to disease progression. There are many challenges to managing cystic fibrosis lung infection but as knowledge about the airway microbiome continues to increase, this may lead to advances in the therapeutic management of the disease. © 2011 Future Medicine Ltd.
Resumo:
Strains of the Burkholderia cepacia complex have emerged as a serious threat to patients with cystic fibrosis due to their ability to infect the lung and cause, in some patients, a necrotizing pneumonia that is often lethal. It has recently been shown that several strains of the B. cepacia complex can escape intracellular killing by free-living amoebae following phagocytosis. In this work, the ability of two B. cepacia complex strains to resist killing by macrophages was explored. Using fluorescence microscopy, electron microscopy and a modified version of the gentamicin-protection assay, we demonstrate that B. cepacia CEP021 (genomovar VI), and Burkholderia vietnamiensis (previously B. cepacia genomovar V) CEP040 can survive in PU5-1.8 murine macrophages for a period of at least 5 d without significant bacterial replication. Furthermore, bacterial entry into macrophages stimulated production of tumour necrosis factor and primed them to release toxic oxygen radicals following treatment with phorbol myristoyl acetate. These effects were probably caused by bacterial LPS, as they were blocked by polymyxin B. Infected macrophages primed with interferon gamma produced less nitric oxide than interferon-gamma-primed uninfected cells. We propose that the ability of B. cepacia to resist intracellular killing by phagocytic cells may play a role in the pathogenesis of cystic fibrosis lung infection. Our data are consistent with a model where repeated cycles of phagocytosis and cellular activation without bacterial killing may promote a deleterious inflammatory response causing tissue destruction and decay of lung function.
Resumo:
Cystic fibrosis (CF) patients are at great risk of opportunistic lung infection, particularly by members of the Burkholderia cepacia complex (Bcc). This group of bacteria can cause damage to the lung tissue of infected patients and are very difficult to eradicate due to their high levels of antibiotic resistance. Though the highly virulent B. cenocepacia has been the focus of virulence research for the past decade, B. multivorans is emerging as the most prevalent Bcc species infecting CF patients in North America. Despite several studies detailing the intramacrophage trafficking and survival of B. cenocepacia, no such data exists for B. multivorans. Our results demonstrated that clinical CF isolates, C5568 and C0514, and an environmental B. multivorans isolate, ATCC17616, were able to replicate and survive within murine macrophages in a manner similar to B. cenocepacia K56-2. These strains were also able to survive but were unable to replicate within human THP-1 macrophages. Differences in macrophage uptake were observed among all three B. multivorans strains; these variances were attributed to major differences in O-antigen production. Unlike B. cenocepacia-containing vacuoles, which delay phagosomal maturation in murine macrophages by 6 h, all B. multivorans containing vacuoles co-localized with late endosome/lysosomal marker LAMP-1 and the lysosomal marker dextran within 2 h of uptake. Together, these results indicate that while both Bcc species are able to survive and replicate within macrophages, they utilize different intramacrophage survival strategies. To observe differences in virulence the strains were compared using the Galleria mellonella model. When compared to the B. multivorans strains tested, B. cenocepacia K56-2 is highly virulent in this model and killed all worms within 24 h when injected at 107 CFU. B. multivorans clinical isolates C5568 and C0514 were significantly more virulent than the soil isolate ATCC17616, which was avirulent, even when worms were injected with 107 CFU. These results suggest strain differences in the virulence of B. multivorans isolates.
Resumo:
The activity of aminoglycosides, used to treat Pseudomonas aeruginosa respiratory infection in cystic fibrosis (CF) patients, is reduced under the anaerobic conditions that reflect the CF lung in vivo. In contrast, a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T), under investigation for use in the treatment of CF lung infection, has increased activity against P. aeruginosa under anaerobic conditions. The aim of this study was to elucidate the mechanisms underlying the increased activity of F:T under anaerobic conditions. Microarray analysis was used to identify the transcriptional basis of increased F:T activity under anaerobic conditions, and key findings were confirmed by microbiological tests including nitrate utilization assays, growth curves and susceptibility testing. Notably, growth in sub-inhibitory concentrations of F:T, but not tobramycin or fosfomycin alone, significantly downregulated (p <0.05) nitrate reductase genes narG and narH, essential for normal anaerobic growth of P. aeruginosa. Under anaerobic conditions, F:T significantly decreased (p
Resumo:
BACKGROUND: A clinical study to investigate the leukotriene B(4) (LTB(4))-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients.
METHODS: P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar bead murine model of P. aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs.
RESULTS: Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not in the blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals.
CONCLUSIONS: Decreased airway neutrophils induced lung proliferation and severe bacteremia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections.
Resumo:
Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.
Resumo:
Nontypeable Haemophilus influenzae (NTHi) is a frequent commensal of the human nasopharynx that causes opportunistic infection in immunocompromised individuals. Existing evidence associates lipooligosaccharide (LOS) with disease, but the specific and relative contributions of NTHi LOS modifications to virulence properties of the bacterium have not been comprehensively addressed. Using NTHi strain 375, an isolate for which the detailed LOS structure has been determined, we compared systematically a set of isogenic mutant strains expressing sequentially truncated LOS. The relative contributions of 2-keto-3-deoxyoctulosonic acid, the triheptose inner core, oligosaccharide extensions on heptoses I and III, phosphorylcholine, digalactose, and sialic acid to NTHi resistance to antimicrobial peptides (AMP), self-aggregation, biofilm formation, cultured human respiratory epithelial infection, and murine pulmonary infection were assessed. We show that opsX, lgtF, lpsA, lic1, and lic2A contribute to bacterial resistance to AMP; lic1 is related to NTHi self-aggregation; lgtF, lic1, and siaB are involved in biofilm growth; opsX and lgtF participate in epithelial infection; and opsX, lgtF, and lpsA contribute to lung infection. Depending on the phenotype, the involvement of these LOS modifications occurs at different extents, independently or having an additive effect in combination. We discuss the relative contribution of LOS epitopes to NTHi virulence and frame a range of pathogenic traits in the context of infection.
Resumo:
Lung infection by Burkholderia species, in particular B. cenocepacia, accelerates tissue damage and increase post-lung transplant mortality in cystic fibrosis patients. Host- microbes interplay largely depends on interactions between pathogen specific molecules and innate immune receptors such as the Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4/MD-2 LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4/MD-2 despite its lipid A having only five acyl chains. Further, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the pro- inflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling, combined with mutagenesis of TLR4-MD2 interactive surfaces, suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4/MD- 2 complex by penta-acylated lipid A, explaining the ability of hypoacylated B. cenocepacia LPS to promote pro- inflammatory responses associated to the severe pathogenicity of this opportunistic bacterium.
Resumo:
Extended-spectrum β-lactamase (ESBL) production and the prevalence of the β-lactamase-encoding gene blaTEM were determined in Prevotella isolates (n=50) cultured from the respiratory tract of adults and young people with cystic fibrosis (CF). Time-kill studies were used to investigate the concept of passive antibiotic resistance and to ascertain whether a β-lactamase-positive Prevotella isolate can protect a recognised CF pathogen from the action of ceftazidime in vitro. The results indicated that approximately three-quarters (38/50; 76%) of Prevotella isolates produced ESBLs. Isolates positive for ESBL production had higher minimum inhibitory concentrations (MICs) of β-lactam antibiotics compared with isolates negative for production of ESBLs (P<0.001). The blaTEM gene was detected more frequently in CF Prevotella isolates from paediatric patients compared with isolates from adults (P=0.002), with sequence analysis demonstrating that 21/22 (95%) partial blaTEM genes detected were identical to blaTEM-116. Furthermore, a β-lactamase-positive Prevotella isolate protected Pseudomonas aeruginosa from the antimicrobial effects of ceftazidime (P=0.03). Prevotella isolated from the CF respiratory microbiota produce ESBLs and may influence the pathogenesis of chronic lung infection via indirect methods, including shielding recognised pathogens from the action of ceftazidime.
Resumo:
Background - Aspergillus respiratory infection is a common complication in cystic fibrosis (CF) and is associated with loss of pulmonary function and allergic disease. Methods - Fifty-three Aspergillus isolates recovered from CF patients were identified to species by Internal Transcribed Spacer Region (ITS), β-tubulin, and calmodulin sequencing. Results - Three species complexes (Terrei, Nigri, and Fumigati) were found. Identification to species level gave a single Aspergillus terreus sensu stricto, one Aspergillus niger sensu stricto and 51 Aspergillus fumigatus sensu stricto isolates. No cryptic species were found. Conclusions - To our knowledge, this is the first prospective study of Aspergillus species in CF using molecular methods. The paucity of non-A. fumigatus and of cryptic species of A. fumigatus suggests a special association of A. fumigatus sensu stricto with CF airways, indicating it likely displays unique characteristics making it suitable for chronic residence in that milieu. These findings could refine an epidemiologic and therapeutic approach geared to this pathogen.
Resumo:
La production excessive de mucus visqueaux dans les poumons des patients atteints de la fibrose kystique (FK) gêne la diffusion des médicaments et entraîne des infections bactériennes. En effet, l’infection pulmonaire par Pseudomonas aeruginosa (PA) est la principale cause de mortalité. Les travaux effectués dans cette thèse avaient pour but de développer des nouvelles formulations de nanoparticules (NP) et de liposomes (LP) chargées avec des antibiotiques pour erradiquer le PA chez les patients atteints de KF. Tout d’abord, les polymères PEG-g-PLA et PLA-OH ont été synthétisés et caractérisés. Ensuite, l'efficacité d'encapsulation (EE) de la tobramycine, du sulfate de colistine et de la lévofloxacine (lévo) a été testée dans des NP de PEG-g-PLA et / ou PLA-OH. Les premiers essais d'optimisation ont montré que les NP chargées avec la lévo présentaient une augmentation de l’EE. La lévo reste alors le médicament de choix. Cependant, la meilleure charge de médicament obtenue était de 0,02% m/m. Pour cette raison, nous avons décidé d'évaluer l'encapsulation de la lévo dans les LP. En fait, des LP chargés de lévo ont présenté une EE d’environ 8% m/m. De plus, la taille et la charge de ces LP étaient appropriées pour la pénétration du vecteur dans le mucus. Le test de biofilm n'est pas reproductible, mais le test standard a montré que la souche mucoïde de PA était susceptible à la lévo. Ainsi, nous avons comparé les activités des LP fraîchement préparées (vides et chargés ) et de la lévo libre sous la forme planctonique de PA. Les résultats ont montré que des LP vides ne gênent pas la croissance bactérienne. Pour la souche mucoïde (Susceptible à la lévo) les LP chargés et le médicament libre ont présenté la même concentration minimale inhibitrice (CMI). Toutefois, les souches non mucoïdes (résistant à la lévo) ont présenté une CMI deux fois plus faible que celle pour le médicament libre. Finalement, les LP se sont avérés plus appropriés pour encapsuler des médicaments hydrophiles que les NP de PEG-g-PLA. En outre, les LP semblent améliorer le traitement contre la souche résistante de PA. Toutefois, des études complémentaires doivent être effectuées afin d'assurer la capacité des liposomes èa traiter la fibrose kystique.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conformational energy calculations and molecular dynamics investigations, both in water and in dimethyl sulfoxide, were carried out on the exopolysaccharide cepacian produced by the majority of the clinical strains of Burkholderia cepacia, an opportunistic pathogen causing serious lung infection in patients affected by cystic fibrosis, the investigation was aimed at defining the structural and conformational features, which might be relevant for clarification of the structure-function relationships of the polymer. The molecular dynamics calculations were carried out by Ramachandran-type energy plots of the disaccharides that constitute the polymer repeating unit. The dynamics of an oligomer composed of three repeating units were investigated in water and in Me2SO, a non-aggregating solvent. Analysis of the time persistence of hydrogen bonds showed the presence of a large number of favourable interactions in water, which were less evident in Me2SO. The calculations on the cepacian chain indicated that polymer conformational features in water were affected by the lateral chains, but were also largely dictated by the presence of solvent. Moreover, the large number of intra-chain hydrogen bonds in water disappeared in Me2SO solution, increasing the average dimension of the polymer chains. (c) 2005 Elsevier Ltd. All rights reserved.