937 resultados para low pressure MOCVD
Resumo:
Nanostructured Si thin films, also referred as polymorphous, were grown by plasma-enhanced chemical vapor deposition. The term "polymorphous" is used to define silicon material that consists of a two-phase mixture of amorphous and ordered Si. The plasma conditions were set to obtain Si thin films from the simultaneous deposition of radical and ordered nanoparticles. Here, a careful analysis by electron transmission microscopy and electron diffraction is reported with the aim to clarify the specific atomic structure of the nanocrystalline particles embedded in the films. Whatever the plasma conditions, the electron diffraction images always revealed the existence of a well-defined crystalline structure different from the diamondlike structure of Si. The formation of nanocrystallinelike films at low temperature is discussed. A Si face-cubic-centered structure is demonstrated here in nanocrystalline particles produced in low-pressure silane plasma at room temperature.
Resumo:
The influence of radio frequency (rf) power and pressure on deposition rate and structural properties of hydrogenated amorphous silicon (a-Si:H) thin films, prepared by rf glow discharge decomposition of silane, have been studied by phase modulated ellipsometry and Fourier transform infrared spectroscopy. It has been found two pressure regions separated by a threshold value around 20 Pa where the deposition rate increases suddenly. This behavior is more marked as rf power rises and reflects the transition between two rf discharges regimes. The best quality films have been obtained at low pressure and at low rf power but with deposition rates below 0.2 nm/s. In the high pressure region, the enhancement of deposition rate as rf power increases first gives rise to a reduction of film density and an increase of content of hydrogen bonded in polyhydride form because of plasma polymerization reactions. Further rise of rf power leads to a decrease of polyhydride bonding and the material density remains unchanged, thus allowing the growth of a-Si:H films at deposition rates above 1 nm/s without any important detriment of material quality. This overcoming of deposition rate limitation has been ascribed to the beneficial effects of ion bombardment on the a-Si:H growing surface by enhancing the surface mobility of adsorbed reactive species and by eliminating hydrogen bonded in polyhydride configurations.
Resumo:
Pressure-jump (p-jump)-induced relaxation kinetics was used to explore the energy landscape of protein folding/unfolding of Y115W, a fluorescent variant of ribonuclease A. Pressure-jumps of 40MPa amplitude (5ms dead-time) were conducted both to higher (unfolding) and to lower (folding) pressure, in the range from 100 to 500MPa, between 30 and 50°C. Significant deviations from the expected symmetrical protein relaxation kinetics were observed. Whereas downward p-jumps resulted always in single exponential kinetics, the kinetics induced by upward p-jumps were biphasic in the low pressure range and monophasic at higher pressures. The relative amplitude of the slow phase decreased as a function of both pressure and temperature. At 50°C, only the fast phase remained. These results can be interpreted within the framework of a two-dimensional energy surface containing a pressure- and temperature-dependent barrier between two unfolded states differing in the isomeric state of the Asn-113–Pro-114 bond. Analysis of the activation volume of the fast kinetic phase revealed a temperature-dependent shift of the unfolding transition state to a larger volume. The observed compensation of this effect by glycerol offers an explanation for its protein stabilizing effect
Resumo:
We investigated the effects of high pressure on the point of no return or the minimum time required for a kicker to respond to the goalkeeper's dive in a simulated penalty kick task. The goalkeeper moved to one side with different times available for the participants to direct the ball to the opposite side in low-pressure (acoustically isolated laboratory) and high-pressure situations (with a participative audience). One group of participants showed a significant lengthening of the point of no return under high pressure. With less time available, performance was at chance level. Unexpectedly, in a second group of participants, high pressure caused a qualitative change in which for short times available participants were inclined to aim in the direction of the goalkeeper's move. The distinct effects of high pressure are discussed within attentional control theory to reflect a decreasing efficiency of the goal-driven attentional system, slowing down performance, and a decreasing effectiveness in inhibiting stimulus-driven behavior.
Resumo:
A novel computer-assisted injection device for the delivery of highly viscous bone cements in vertebroplasty is presented. It addresses the shortcomings of manual injection systems ranging from low-pressure and poor level of control to device failure. The presented instrument is capable of generating a maximum pressure of 5000 kPa in traditional 6-ml syringes and provides an advanced control interface for precise cement delivery from outside radiation fields emitted by intraoperative imaging systems. The integrated real-time monitoring of injection parameters, such as flow-rate, volume, pressure, and viscosity, simplifies consistent documentation of interventions and establishes a basis for the identification of safe injection protocols on the longer term. Control algorithms prevent device failure due to overloading and provide means to immediately stop cement flow to avoid leakage into adjacent tissues.
Resumo:
The unsteady aerodynamics of low pressure turbine vibrating airfoils in flap mode is studied in detail using a frequency domain linearized Navier-Stokes solver. Both the travelling-wave and influence coefficient formulations of the problem are used to highlight key aspects of the physics and understand different trends such as the effect of reduced frequency and Mach number. The study is focused in the low-reduced frequency regime which is of paramount relevance for the design of aeronautical low-pressure turbines and compressors. It is concluded that the effect of the Mach number on the unsteady pressure phase can be neglected in first approximation and that the unsteadiness of the vibrating and adjacent airfoils is driven by vortex shedding mechanisms. Finally a simple model to estimate the work-per-cycle as a function of the reduced frequency and Mach Number is provided. The edge-wise and torsion modes are presented in less detail but it is shown that acoustic waves are essential to explain its behaviour. The non-dimensional work-per-cycle of the edge-wise mode shows a large dependence with the Mach number while in the torsion mode a large number of airfoils is needed to reconstruct the work-per-cycle departing from the influence coefficients.
Resumo:
In our study on sub-critical hydrocarbon permeation in activated carbon, a minimum in the total permeability (B-T) at low pressure has been observed for only long-chain hydrocarbons such as n-hexane and n-heptane. Such an observation suggests that the minimum appearance depends on the properties of permeating vapors as well as the porous medium. In this paper a permeation model is presented to explain the minimum behavior with the allowance of the collision-reflection factor in the Knudsen diffusivity to be a function of surface loading. Surface diffusion was found to be very significant compared to other transport mechanisms such as Knudsen diffusion and gaseous viscous flow at low pressures. Since the gaseous viscous flow contributes negligibly to the B, at low pressures, the minimum appearance in the B, is mainly attributed to the interplay between Knudsen diffusion and surface diffusion. Also, the molecular structure of adsorbates plays an important role in the minimum appearance.
Resumo:
Diffusions of free and adsorbed molecules of subcritical hydrocarbons in activated carbon were investigated to study the influence of adsorbed molecules on both diffusion processes at low pressures. A collision reflection factor, defined as the fraction of molecules undergoing collision to the solid surface over reflection from the surface, is incorporated into Knudsen diffusivity and surface diffusivity in meso/macropores. Since the porous structure of activated carbon is bimodal in nature, the diffusion of adsorbed molecules is contributed by that of weakly adsorbed molecules on the meso/macropore surfaces and that of strongly adsorbed molecules in the small confinement of micropores. The mobility of adsorbed molecules on the meso/macropore surface is characterized by the surface diffusivity D-mu 2, while that in the micropore is characterized by D-mu 1. In our study with subcritical hydrocarbons, we have found that the former increases almost linearly with pressure, while the latter exhibits a sharp increase at a very low-pressure region and then decreases beyond a critical pressure. This critical pressure is identified as a pressure at which the micropores are saturated.
Resumo:
The effect of low energy nitrogen molecular ion beam bombardment on metals and compound semiconductors has been studied, with the aim to investigate at the effects of ion and target properties. For this purpose, nitrogen ion implantation in aluminium, iron, copper, gold, GaAs and AIGaAs is studied using XPS and Angle Resolve XPS. A series of experimental studies on N+2 bombardment induced compositional changes, especially the amount of nitrogen retained in the target, were accomplished. Both monoenergetic implantation and non-monoenergetic ion implantation were investigated, using the VG Scientific ESCALAB 200D system and a d. c. plasma cell, respectively. When the samples, with the exception of gold, are exposed to air, native oxide layers are formed on the surfaces. In the case of monoenergetic implantation, the surfaces were cleaned using Ar+ beam bombardment prior to implantation. The materials were then bombarded with N2+ beam and eight sets of successful experiments were performed on each sample, using a rastered N2+ ion beam of energy of 2, 3, 4 and 5 keV with current densities of 1 μA/cm2 and 5 μA/cm22 for each energy. The bombarded samples were examined by ARXPS. After each complete implantation, XPS depth profiles were created using Ar+ beam at energy 2 ke V and current density 2 μA/cm2 . As the current density was chosen as one of the parameters, accurate determination of current density was very important. In the case of glow discharge, two sets of successful experiments were performed in each case, by exposing the samples to nitrogen plasma for the two conditions: at low pressure and high voltage and high pressure and low voltage. These samples were then examined by ARXPS. On the theoretical side, the major problem was prediction of the number of ions of an element that can be implanted in a given matrix. Although the programme is essentially on experimental study, but an attempt is being made to understand the current theoretical models, such as SATVAL, SUSPRE and TRIM. The experimental results were compared with theoretical predictions, in order to gain a better understanding of the mechanisms responsible. From the experimental results, considering possible experimental uncertainties, there is no evidence of significant variation in nitrogen saturation concentration with ion energy or ion current density in the range of 2-5 ke V, however, the retention characteristics of implantant seem to strongly depend on the chemical reactivity between ion species and target material. The experimental data suggests the presence of at least one thermal process. The discrepancy between the theoretical and experimental results could be the inability of the codes to account for molecular ion impact and thermal processes.
Resumo:
Currently, the main source for the production of liquid transportation fuels is petroleum, the continued use of which faces many challenges including depleting oil reserves, significant oil price rises, and environmental concerns over global warming which is widely believed to be due to fossil fuel derived CO2 emissions and other greenhouse gases. In this respect, lignocellulosic or plant biomass is a particularly interesting resource as it is the only renewable source of organic carbon that can be converted into liquid transportation fuels. The gasification of biomass produces syngas which can then be converted into synthetic liquid hydrocarbon fuels by means of the Fischer-Tropsch (FT) synthesis. This process has been widely considered as an attractive option for producing clean liquid hydrocarbon fuels from biomass that have been identified as promising alternatives to conventional fossil fuels like diesel and kerosene. The resulting product composition in FT synthesis is influenced by the type of catalyst and the reaction conditions that are used in the process. One of the issues facing this conversion process is the development of a technology that can be scaled down to match the scattered nature of biomass resources, including lower operating pressures, without compromising liquid composition. The primary aims of this work were to experimentally explore FT synthesis at low pressures for the purpose of process down-scaling and cost reduction, and to investigate the potential for obtaining an intermediate FT synthetic crude liquid product that can be integrated into existing refineries under the range of process conditions employed. Two different fixed-bed micro-reactors were used for FT synthesis; a 2cm3 reactor at the University of Rio de Janeiro (UFRJ) and a 20cm3 reactor at Aston University. The experimental work firstly involved the selection of a suitable catalyst from three that were available. Secondly, a parameter study was carried out on the 20cm3 reactor using the selected catalyst to investigate the influence of reactor temperature, reactor pressure, space velocity, the H2/CO molar ratio in the feed syngas and catalyst loading on the reaction performance measured as CO conversion, catalyst stability, product distribution, product yields and liquid hydrocarbon product composition. From this parameter study a set of preferred operating conditions was identified for low pressure FT synthesis. The three catalysts were characterized using BET, XRD, TPR and SEM. The catalyst selected was an unpromoted Co/Al2O3 catalyst. FT synthesis runs on the 20cm3 reactor at Aston were conducted for 48 hours. Permanent gases and light hydrocarbons (C1-C5) were analysed in an online GC-TCD/FID at hourly intervals. The liquid hydrocarbons collected were analyzed offline using GC-MS for determination of fuel composition. The parameter study showed that CO conversion and liquid hydrocarbon yields increase with increasing reactor pressure up to around 8 bar, above which the effect of pressure is small. The parameters that had the most significant influence on CO conversion, product selectivity and liquid hydrocarbon yields were reactor temperature and catalyst loading. The preferred reaction conditions identified for this research were: T = 230ºC, P = 10 bar, H2/CO = 2.0, WHSV = 2.2 h-1, and catalyst loading = 2.0g. Operation in the low range of pressures studied resulted in low CO conversions and liquid hydrocarbon yields, indicating that low pressure BTL-FT operation may not be industrially viable as the trade off in lower CO conversions and once-through liquid hydrocarbon product yields has to be carefully weighed against the potential cost savings resulting from process operation at lower pressures.
Resumo:
Hydrogen has been called the fuel of the future, and as it’s non- renewable counterparts become scarce the economic viability of hydrogen gains traction. The potential of hydrogen is marked by its high mass specific energy density and wide applicability as a fuel in fuel cell vehicles and homes. However hydrogen’s volume must be reduced via pressurization or liquefaction in order to make it more transportable and volume efficient. Currently the vast majority of industrially produced hydrogen comes from steam reforming of natural gas. This practice yields low-pressure gas which must then be compressed at considerable cost and uses fossil fuels as a feedstock leaving behind harmful CO and CO2 gases as a by-product. The second method used by industry to produce hydrogen gas is low pressure electrolysis. In comparison the electrolysis of water at low pressure can produce pure hydrogen and oxygen gas with no harmful by-products using only water as a feedstock, but it will still need to be compressed before use. Multiple theoretical works agree that high pressure electrolysis could reduce the energy losses due to product gas compression. However these works openly admit that their projected gains are purely theoretical and ignore the practical limitations and resistances of a real life high pressure system. The goal of this work is to experimentally confirm the proposed thermodynamic gains of ultra-high pressure electrolysis in alkaline solution and characterize the behavior of a real life high pressure system.
Resumo:
The low-temperature low-pressure hydrogen based plasmas were used to study the influence of processes and discharge conditions on corrosion removal. The capacitive coupled RF discharge in the continuous or pulsed regime was used at operating pressure of 100-200 Pa. Plasma treatment was monitored by optical emission spectroscopy. To be able to study influence of various process parameters, the model corroded samples with and without sandy incrustation were prepared. The SEM-EDX analyzes were carried out to verify corrosion removal efficiency. Experimental conditions were optimized for the selected most frequent materials of original metallic archaeological objects (iron, bronze, copper, and brass). Chlorides removal is based on hydrogen ion reactions while oxides are removed mainly by neutral species interactions. A special focus was kept for the samples temperature because it was necessary to avoid any metallographic changes in the material structure. The application of higher power pulsed regime with low duty cycle seems be the best treatment regime. The low pressure hydrogen plasma is not applicable for objects with a very broken structure or for nonmetallic objects due to the non-uniform heat stress. Due to this fact, the new developed plasmas generated in liquids were applied on selected original archaeological glass materials.
Resumo:
The West African Monsoon (WAM) and its representation in numerical models are strongly influenced by the Saharan Heat Low (SHL), a low-pressure system driven by radiative heating over the central Sahara and ventilated by the cold and moist inflow from adjacent oceans. It has recently been shown that a significant part of the southerly moisture flux into the SHL originates from convective cold pools over the Sahel. These density currents driven by evaporation of rain are largely absent in models with parameterized convection. This crucial issue has been hypothesized to contribute to the inability of many climate models to reproduce the variability of the WAM. Here, the role of convective cold pools approaching the SHL from the Atlas Mountains, which are a strong orographic trigger for deep convection in Northwest Africa, is analyzed. Knowledge about the frequency of these events, as well as their impact on large-scale dynamics, is required to understand their contribution to the variability of the SHL and to known model uncertainties. The first aspect is addressed through the development of an objective and automated method for the generation of multi-year climatologies not available before. The algorithm combines freely available standard surface observations with satellite microwave data. Representativeness of stations and influence of their spatial density are addressed by comparison to a satellite-only climatology. Applying this algorithm to data from automated weather stations and manned synoptic stations in and south of the Atlas Mountains reveals the frequent occurrence. On the order of 6 events per month are detected from May to September when the SHL is in its northernmost position. The events tend to cluster into several-days long convectively active periods, often with strong events on consecutive days. This study is the first to diagnose dynamical impacts of such periods on the SHL, based on simulations of two example cases using the Weather Research and Forecast (WRF) model at convection-permitting resolution. Sensitivity experiments with artificially removed cold pools as well as different resolutions and parameterizations are conducted. Results indicate increases in surface pressure of more than 1 hPa and significant moisture transports into the desert over several days. This moisture affects radiative heating and thus the energy balance of the SHL. Even though cold pool events north of the SHL are less frequent when compared to their Sahelian counterparts, it is shown that they gain importance due to their temporal clustering on synoptic timescale. Together with studies focusing on the Sahel, this work emphasizes the need for improved parameterization schemes for deep convection in order to produce more reliable climate projections for the WAM.
Resumo:
The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response. Introduction
Resumo:
Este trabalho tem como objetivo identificar a influência atmosférica em escala sinótica sobre o oceano, para eventos extremos de maré meteorológica na costa sudeste brasileira. Para isso foram utilizados dados de elevação do nível do mar do Porto de Santos-SP, campos de vento e pressão em superfície das reanálises do modelo do NCEP abrangendo o Atlântico Sul, no período de 1951 a 1990. Foi possível identificar a variabilidade sazonal e o padrão de evolução dos sistemas atmosféricos associados aos eventos extremos, de grande relevância para aplicações em prognósticos e alertas a autoridades. O outono e inverno apresentaram a maior ocorrência de extremos positivos (40,2 % e 30,8 % respectivamente), enquanto a primavera e o inverno foram as estações com maior número de extremos negativos (47,2 % e 32,3 % respectivamente). Os resultados mostram que os casos mais importantes de sobre-elevação do nível do mar ocorrem com a evolução e persistência de sistemas de baixa pressão sobre o oceano, com ventos de sudoeste acima de 8 m/s, juntamente com o anticiclone da retaguarda posicionado sobre o continente.