876 resultados para location-based multicast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multicast is an efficient approach to save network bandwidth for multimedia streaming services. To provide Quality of Services (QoS) for the multimedia services while maintain the advantage of multicast in bandwidth efficiency, admission control for multicast sessions are expected. Probe-based multicast admission control (PBMAC) schemes are of a sort of scalable and simple admission control for multicast. Probing scheme is the essence of PBMAC. In this paper, after a detailed survey on three existing probing schemes, we evaluate these schemes using simulation and analysis approaches in two aspects: admission correctness and group scalability. Admission correctness of the schemes is compared by simulation investigation. Analytical models for group scalability are derived, and validated by simulation results. The evaluation results illustrate the advantages and weaknesses of each scheme, which are helpful for people to choose proper probing scheme for network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To guarantee QoS for multicast transmission, admission control for multicast sessions is expected. Probe-based multicast admission control (PBMAC) scheme is a scalable and simple approach. However, PBMAC suffers from the subsequent request problem which can significantly reduce the maximum number of multicast sessions that a network can admit. In this letter, we describe the subsequent request problem and propose an enhanced PBMAC scheme to solve this problem. The enhanced scheme makes use of complementary probing and remarking which require only minor modification to the original scheme. By using a fluid-based analytical model, we are able to prove that the enhanced scheme can always admit a higher number of multicast sessions. Furthermore, we present validation of the analytical model using packet based simulation. Copyright © 2005 The Institute of Electronics, Information and Communication Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of GPS enabled smartphones, an increasing number of users is actively sharing their location through a variety of applications and services. Along with the continuing growth of Location-Based Social Networks (LBSNs), security experts have increasingly warned the public of the dangers of exposing sensitive information such as personal location data. Most importantly, in addition to the geographical coordinates of the user’s location, LBSNs allow easy access to an additional set of characteristics of that location, such as the venue type or popularity. In this paper, we investigate the role of location semantics in the identification of LBSN users. We simulate a scenario in which the attacker’s goal is to reveal the identity of a set of LBSN users by observing their check-in activity. We then propose to answer the following question: what are the types of venues that a malicious user has to monitor to maximize the probability of success? Conversely, when should a user decide whether to make his/her check-in to a location public or not? We perform our study on more than 1 million check-ins distributed over 17 urban regions of the United States. Our analysis shows that different types of venues display different discriminative power in terms of user identity, with most of the venues in the “Residence” category providing the highest re-identification success across the urban regions. Interestingly, we also find that users with a high entropy of their check-ins distribution are not necessarily the hardest to identify, suggesting that it is the collective behaviour of the users’ population that determines the complexity of the identification task, rather than the individual behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the rapid spread of smartphones has led to the increasing popularity of Location-Based Social Networks (LBSNs). Although a number of research studies and articles in the press have shown the dangers of exposing personal location data, the inherent nature of LBSNs encourages users to publish information about their current location (i.e., their check-ins). The same is true for the majority of the most popular social networking websites, which offer the possibility of associating the current location of users to their posts and photos. Moreover, some LBSNs, such as Foursquare, let users tag their friends in their check-ins, thus potentially releasing location information of individuals that have no control over the published data. This raises additional privacy concerns for the management of location information in LBSNs. In this paper we propose and evaluate a series of techniques for the identification of users from their check-in data. More specifically, we first present two strategies according to which users are characterized by the spatio-temporal trajectory emerging from their check-ins over time and the frequency of visit to specific locations, respectively. In addition to these approaches, we also propose a hybrid strategy that is able to exploit both types of information. It is worth noting that these techniques can be applied to a more general class of problems where locations and social links of individuals are available in a given dataset. We evaluate our techniques by means of three real-world LBSNs datasets, demonstrating that a very limited amount of data points is sufficient to identify a user with a high degree of accuracy. For instance, we show that in some datasets we are able to classify more than 80% of the users correctly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The gathering of people in everyday life is intertwined with travelling to negotiated locations. As a result, mobile phones are often used to rearrange meetings when one or more participants are late or cannot make it on time. Our research is based on the hypothesis that the provision of location data can enhance the experience of people who are meeting each other in different locations. This paper presents work-in-progress on a novel approach to share one’s location data in real-time which is visualised on a web-based map in a privacy conscious way. Disposable Maps allows users to select contacts from their phone’s address book who then receive up-to-date location data. The utilisation of peer-to-peer notifications and the application of unique URLs for location storage and presentation enable location sharing whilst ensuring users’ location privacy. In contrast to other location sharing services like Google Latitude, Disposable Maps enables ad hoc location sharing to actively selected location receivers for a fixed period of time in a specific given situation. We present first insights from an initial application user test and show future work on the approach of disposable information allocation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The first use of computing technologies and the development of land use models in order to support decision-making processes in urban planning date back to as early as mid 20th century. The main thrust of computing applications in urban planning is their contribution to sound decision-making and planning practices. During the last couple of decades many new computing tools and technologies, including geospatial technologies, are designed to enhance planners' capability in dealing with complex urban environments and planning for prosperous and healthy communities. This chapter, therefore, examines the role of information technologies, particularly internet-based geographic information systems, as decision support systems to aid public participatory planning. The chapter discusses challenges and opportunities for the use of internet-based mapping application and tools in collaborative decision-making, and introduces a prototype internet-based geographic information system that is developed to integrate public-oriented interactive decision mechanisms into urban planning practice. This system, referred as the 'Community-based Internet GIS' model, incorporates advanced information technologies, distance learning, sustainable urban development principles and community involvement techniques in decision-making processes, and piloted in Shibuya, Tokyo, Japan.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Underwater wireless sensor networks (UWSNs) have become the seat of researchers' attention recently due to their proficiency to explore underwater areas and design different applications for marine discovery and oceanic surveillance. One of the main objectives of each deployed underwater network is discovering the optimized path over sensor nodes to transmit the monitored data to onshore station. The process of transmitting data consumes energy of each node, while energy is limited in UWSNs. So energy efficiency is a challenge in underwater wireless sensor network. Dual sinks vector based forwarding (DS-VBF) takes both residual energy and location information into consideration as priority factors to discover an optimized routing path to save energy in underwater networks. The modified routing protocol employs dual sinks on the water surface which improves network lifetime. According to deployment of dual sinks, packet delivery ratio and the average end to end delay are enhanced. Based on our simulation results in comparison with VBF, average end to end delay reduced more than 80%, remaining energy increased 10%, and the increment of packet reception ratio was about 70%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Construction is one of the most hazardous industries due to its dynamic, temporary, and decentralized nature. The Hong Kong Commissioner for Labor identifies worker behavior as the root cause of construction accidents. Behavior-based safety (BBS) is one effective approach in managing employee safety issues. However, there is little research on the application of BBS in the construction industry. This research proposes an extension of the BBS approach, proactive behavior-based safety (PBBS), to improve construction safety. PBBS integrates the theory of BBS with the technology of Proactive Construction Management System (PCMS). The innovations of PBBS are: (1) automatically monitoring location-based behaviors; (2)quantitatively measuring safety performance; (3) investigating potential causes of unsafe behaviors; and (4) improving the efficiency of safety management. A pilot study of a Hong Kong construction site practicing PBBS was conducted. The experiment results showed that PBBS performed well on construction accident prevention and the Safety Index (SI) of the two project teams, with increased improvements by 36.07% and 44.70% respectively. It is concluded that PBBS is effective and adaptable to construction industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a methodology for selection of static VAR compensator location based on static voltage stability analysis of power systems. The analysis presented here uses the L-index of load buses, which includes voltage stability information of a normal load flow and is in the range of 0 (no load of system) to 1 (voltage collapse). An approach has been presented to select a suitable size and location of static VAR compensator in an EHV network for system voltage stability improvement. The proposed approach has been tested under simulated conditions on a few power systems and the results for a sample radial network and a 24-node equivalent EHV power network of a practical system are presented for illustration purposes. © 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Localization is essential feature for many mobile wireless applications. Data collected from applications such as environmental monitoring, package tracking or position tracking has no meaning without knowing the location of this data. Other applications have location information as a building block for example, geographic routing protocols, data dissemination protocols and location-based services such as sensing coverage. Many of the techniques have the trade-off among many features such as deployment of special hardware, level of accuracy and computation power. In this paper, we present an algorithm that extracts location constraints from the connectivity information. Our solution, which does not require any special hardware and a small number of landmark nodes, uses two types of location constraints. The spatial constraints derive the estimated locations observing which nodes are within communication range of each other. The temporal constraints refine the areas, computed by the spatial constraints, using properties of time and space extracted from a contact trace. The intuition of the temporal constraints is to limit the possible locations that a node can be using its previous and future locations. To quantify this intuitive improvement in refine the nodes estimated areas adding temporal information, we performed simulations using synthetic and real contact traces. The results show this improvement and also the difficulties of using real traces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Predicting the next location of a user based on their previous visiting pattern is one of the primary tasks over data from location based social networks (LBSNs) such as Foursquare. Many different aspects of these so-called “check-in” profiles of a user have been made use of in this task, including spatial and temporal information of check-ins as well as the social network information of the user. Building more sophisticated prediction models by enriching these check-in data by combining them with information from other sources is challenging due to the limited data that these LBSNs expose due to privacy concerns. In this paper, we propose a framework to use the location data from LBSNs, combine it with the data from maps for associating a set of venue categories with these locations. For example, if the user is found to be checking in at a mall that has cafes, cinemas and restaurants according to the map, all these information is associated. This category information is then leveraged to predict the next checkin location by the user. Our experiments with publicly available check-in dataset show that this approach improves on the state-of-the-art methods for location prediction.