990 resultados para local mode


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of a significant number of the Structures of helical membrane proteins has prompted us to investigate the mode of helix-helix packing. In the present study, we have considered a dataset of alpha-helical membrane proteins representing Structures solved from all the known superfamilies. We have described the geometry of all the helical residues in terms of local coordinate axis at the backbone level. Significant inter-helical interactions have been considered as contacts by weighing the number of atom-atom contacts, including all the side-chain atoms. Such a definition of local axis and the contact criterion has allowed us to investigate the inter-helical interaction in a systematic and quantitative manner. We show that a single parameter (designated as alpha), which is derived from the parameters representing the Mutual orientation of local axes, is able to accurately Capture the details of helix-helix interaction. The analysis has been carried Out by dividing the dataset into parallel, anti-parallel, and perpendicular orientation of helices. The study indicates that a specific range of alpha value is preferred for interactions among the anti-parallel helices. Such a preference is also seen among interacting residues of parallel helices, however to a lesser extent. No such preference is seen in the case of perpendicular helices, the contacts that arise mainly due to the interaction Of Surface helices with the end of the trans-membrane helices. The Study Supports the prevailing view that the anti-parallel helices are well packed. However, the interactions between helices of parallel orientation are non-trivial. The packing in alpha-helical membrane proteins, which is systematically and rigorously investigated in this study, may prove to be useful in modeling of helical membrane proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the nonlocal elasticity theory has been incorporated into classical Euler-Bernoulli rod model to capture unique features of the nanorods under the umbrella of continuum mechanics theory. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behaviors of nanorods from those of macroscopic rods. Nonlocal Euler-Bernoulli bar model is developed for nanorods. Explicit expressions are derived for wavenumbers and wave speeds of nanorods. The analysis shows that the wave characteristics are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial wave mode where no wave propagation occurs. This is manifested in the spectrum cures as the region where the wavenumber tends to infinite (or wave speed tends to zero). The results can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical accretion disks. In systems accreting at well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the disk is essentially collisionless. We present a nonlinear study of the collisionless MRI using first-principles particle-in-cell plasma simulations. We focus on local two-dimensional (axisymmetric) simulations, deferring more realistic three-dimensional simulations to future work. For simulations with net vertical magnetic flux, the MRI continuously amplifies the magnetic field, B, until the Alfven velocity, v(A), is comparable to the speed of light, c (independent of the initial value of v(A)/c). This is consistent with the lack of saturation of MRI channel modes in analogous axisymmetric MHD simulations. The amplification of the magnetic field by the MRI generates a significant pressure anisotropy in the plasma (with the pressure perpendicular to B being larger than the parallel pressure). We find that this pressure anisotropy in turn excites mirror modes and that the volume-averaged pressure anisotropy remains near the threshold for mirror mode excitation. Particle energization is due to both reconnection and viscous heating associated with the pressure anisotropy. Reconnection produces a distinctive power-law component in the energy distribution function of the particles, indicating the likelihood of non-thermal ion and electron acceleration in collisionless accretion disks. This has important implications for interpreting the observed emission-from the radio to the gamma-rays-of systems such as Sgr A*.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Filamentary structures are ubiquitous in astrophysics and are observed at various scales. On a cosmological scale, matter is usually distributed along filaments, and filaments are also typical features of the interstellar medium. Within a cosmic filament, matter can contract and form galaxies, whereas an interstellar gas filament can clump into a series of bead-like structures that can then turn into stars. To investigate the growth of such instabilities, we derive a local dispersion relation for an idealized self-gravitating filament and study some of its properties. Our idealized picture consists of an infinite self-gravitating and rotating cylinder with pressure and density related by a polytropic equation of state. We assume no specific density distribution, treat matter as a fluid, and use hydrodynamics to derive the linearized equations that govern the local perturbations. We obtain a dispersion relation for axisymmetric perturbations and study its properties in the (kR, kz) phase space, where kR and kz are the radial and longitudinal wavenumbers, respectively. While the boundary between the stable and unstable regimes is symmetrical in kR and kz and analogous to the Jeans criterion, the most unstable mode displays an asymmetry that could constrain the shape of the structures that form within the filament. Here the results are applied to a fiducial interstellar filament, but could be extended for other astrophysical systems, such as cosmological filaments and tidal tails.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cool cluster cores are in global thermal equilibrium but are locally thermally unstable. We study a non-linear phenomenological model for the evolution of density perturbations in the intracluster medium (ICM) due to local thermal instability and gravity. We have analysed and extended a model for the evolution of an overdense blob in the ICM. We find two regimes in which the overdense blobs can cool to thermally stable low temperatures. One for large t(cool)/t(ff) (t(cool) is the cooling time and t(ff) is the free-fall time), where a large initial overdensity is required for thermal runaway to occur; this is the regime which was previously analysed in detail. We discover a second regime for t(cool)/t(ff) less than or similar to 1 (in agreement with Cartesian simulations of local thermal instability in an external gravitational field), where runaway cooling happens for arbitrarily small amplitudes. Numerical simulations have shown that cold gas condenses out more easily in a spherical geometry. We extend the analysis to include geometrical compression in weakly stratified atmospheres such as the ICM. With a single parameter, analogous to the mixing length, we are able to reproduce the results from numerical simulations; namely, small density perturbations lead to the condensation of extended cold filaments only if t(cool)/t(ff) less than or similar to 10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Dugdale-type cohesive zone model is used to predict the mode I crack growth resistance (R-curve) of metallic foams, with the fracture process characterized by an idealized traction-separation law that relates the crack surface traction to crack opening displacement. A quadratic yield function, involving the von Mises effective stress and mean stress, is used to account for the plastic compressibility of metallic foams. Finite element calculations are performed for the crack growth resistance under small scale yielding and small scale bridging in plane strain, with K-field boundary conditions. The following effects upon the fracture process are quantified: material hardening, bridging strength, T-stress (the non-singular stress acting parallel to the crack plane), and the shape of yield surface. To study the failure behaviour and notch sensitivity of metallic foams in the presence of large scale yielding, a study is made for panels embedded with either a centre-crack or an open hole and subjected to tensile stressing. For the centre-cracked panel, a transition crack size is predicted for which the fracture response switches from net section yielding to elastic-brittle fracture. Likewise, for a panel containing a centre-hole, a transition hole diameter exists for which the fracture response switches from net section yielding to a local maximum stress criterion at the edge of the hole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compression, tension and high-velocity plate impact experiments were performed on a typical tough Zr41.2Ti13.8Cu10Ni12.5Be22.5 (Vit 1) bulk metallic glass (BMG) over a wide range of strain rates from similar to 10(-4) to 10(6) s(-1). Surprisingly, fine dimples and periodic corrugations on a nanoscale were also observed on dynamic mode I fracture surfaces of this tough Vit 1. Taking a broad overview of the fracture patterning of specimens, we proposed a criterion to assess whether the fracture of BMGs is essentially brittle or plastic. If the curvature radius of the crack tip is greater than the critical wavelength of meniscus instability [F. Spaepen, Acta Metall. 23 615 (1975); A.S. Argon and M. Salama, Mater. Sci. Eng. 23 219 (1976)], microscale vein patterns and nanoscale dimples appear on crack surfaces. However, in the opposite case, the local quasi-cleavage/separation through local atomic clusters with local softening in the background ahead of the crack tip dominates, producing nanoscale periodic corrugations. At the atomic cluster level, energy dissipation in fracture of BMGs is, therefore, determined by two competing elementary processes, viz. conventional shear transformation zones (STZs) and envisioned tension transformation zones (TTZs) ahead of the crack tip. Finally, the mechanism for the formation of nanoscale periodic corrugation is quantitatively discussed by applying the present energy dissipation mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two local solutions, one perpendicular and one parallel to the direction of solar gravitational field, are discussed. The influence of gravity on the gas-dynamical process driven by the piston is discussed in terms of characteristic theory, and the flow field is given quantitatively. For a typical piston trajectory similar to the one for an eruptive prominence, the velocity of the shock front which locates ahead the transient front is nearly constant or slightly accelerated, and the width of the compressed flow region may be kept nearly constant or increased linearly, depending on the velocity distribution of the piston. Based on these results, the major features of the transient may be explained. Some of the fine structure of the transient is also shown, which may be compared in detail with observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A real-time, in situ fixing method by use of heating with a CO2 laser beam is suggested for thermal fixing of a small local hologram in the bulk of a Fe:LiNbO3 photorefractive crystal. For heating up to 100 degrees C-200 degrees C a volume with a shape similar to that of the laser beam a heat-guiding technique is developed. On the basis of the heat-transfer equations, different heating modes with or without metal absorbers for heat guiding-obtained by use of a continuous or pulsed laser beam are analyzed. The optimal mode may be pulsed heating with absorbers. On this basis experiments have been designed and demonstrated. It is seen that the fixing process with CO2 laser beam is short compared with the process by use of an oven, and the fixing efficiency is quite high. (C) 1998 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the technical efficiency in artisanal fisheries in Lagos State of Nigeria. The study employed a two stage random sampling procedure for the selection of 120 respondents. The analytical techniques involved descriptive statistics and estimation of technical efficiency following maximum likelihood estimation (MLE) procedure available in FRONTIER 4.1. The MLE result of the stochastic frontier production function showed that hired labour, cost of repair and capital items are critical factors that influences productivity of artisanal fishermen with the coefficient of hired labour being highly elastic. This implies that employing more labour will significantly increase the catch in the study area. The predicted farm efficiency with an average value of 0.92 showed that there is a marginal potential of about 8 percent to increase the catch, hence the income of the fishermen. The study further examined the factors that influence productivity of fishermen in the study area. Year of education, mode of operation and frequency of fishing have important implication on the technical efficiency of fishermen in the study area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a general, necessary, and sufficient condition for the possibility of transforming a mixed bipartite Gaussian state with arbitrarily many modes to another one under arbitrary local Gaussian channels, which do not include classical communication. Moreover, by means of this condition we present a necessary criterion that can be used to check the possibility of a state transformation between two mixed Gaussian states. At the same time, we prove that our criterion can be reduced to the Eisert-Plenio criterion when the mode number is chosen as 1 per side.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the normal form of the covariance matrix for three-mode tripartite Gaussian states. By means of this result, the general form of a necessary and sufficient criterion for the possibility of a state transformation from one tripartite entangled Gaussian state to another with three modes is found. Moreover, we show that the conditions presented include not only inequalities but equalities as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent infrared spectroscpic observations of local vibrational mode absorptions have revealed a number of photosensitive centers in semi-insulating GaAs. They include (OVAs) center which has three modes at 730 cm(-1) (A), 715 cm(-1) (B), and 714 cm(-1) (C), respectively, a suggested NH center related to a line at 983 cm(-1) (X(1)), and centers related to hydrogen, such as (H-O) or (H-N) bonds, corresponding to a group of peaks in the region of 2900-3500 cm(-1). The photosensitivity of various local vibration centers was observed to have similar time dependence under near-infrared illumination and was suggested to be due to their charge-state interconversion. Mainly described in this work is the effect of the 1.25-eV illumination. It is confirmed that this photoinduced kinetic process results from both electron capture and hole capture, which are closely related to the photoionization behavior and metastability of the EL2 center.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.