984 resultados para liver toxicity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trichloroethylene (TCE)-induced liver toxicity and carcinogenesis is believed to be mediated in part by activation of the peroxisome proliferator-activated receptor α (PPARα). However, the contribution of the two TCE metabolites, dichloroacetate (DCA) and trichloroacetate (TCA) to the toxicity of TCE, remains unclear. The aim of the present study was to determine the metabolite profiles in serum and urine upon exposure of mice to TCE, to aid in determining the metabolic response to TCE exposure and the contribution of DCA and TCA to TCE toxicity. C57BL/6 mice were administered TCE, TCA, or DCA, and urine and serum subjected to ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based global metabolomics analysis. The ions were identified through searching metabolomics databases and by comparison with authentic standards, and quantitated using multiple reactions monitoring. Quantitative polymerase chain reaction of mRNA, biochemical analysis, and liver histology were also performed. TCE exposure resulted in a decrease in urine of metabolites involved in fatty acid metabolism, resulting from altered expression of PPARα target genes. TCE treatment also induced altered phospholipid homeostasis in serum, as revealed by increased serum lysophosphatidylcholine 18:0 and 18:1, and phosphatidylcholine metabolites. TCA administration revealed similar metabolite profiles in urine and serum upon TCE exposure, which correlated with a more robust induction of PPARα target gene expression associated with TCA than DCA treatment. These data show the metabolic response to TCE exposure and demonstrate that TCA is the major contributor to TCE-induced metabolite alterations observed in urine and serum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colorectal cancer is the number two cancer killer in the United States. Although primary colorectal cancer can be resected by surgery, patients often die from metastatic disease. Liver is the most common site of metastasis for colorectal cancer. It is difficult to selectively kill metastatic colon cancer cells without damaging normal liver functions. Thus it becomes a high priority to develop a selective targeting system for the treatment of colorectal cancer liver metastasis. ^ In the current study, a gene therapy strategy that allows a therapeutic gene to selectively destroy metastatic colon cancer cells without affecting normal liver cells is developed. The APC gene is frequently mutated in colorectal cancers. These mutations activate β-catenin responsive promoters. An optimized β-catenin responsive promoter, containing TCF consensus binding sites, was engineered for this study. This TCF promoter was found to express preferentially in APC mutated/β-catenin activated colorectal cancers while maintaining a low expression level in cell lines of liver origin. A recombinant adenoviral vector AdTCF-TK, in which the TCF promoter controls expression of the herpes simplex virus thymidine kinase gene, selectively destroyed colorectal cancer cells in vitro. AdTCF-TK virus and ganciclovir treatment also inhibited the growth of solid tumour derived from the colon cancer cell line DLD-1 in nude mice. In a control experiment, the growth inhibition effect of the same virus was attenuated in a liver cancer cell line. ^ In the present study, a novel method was developed to target therapeutic gene expression to colon cancer cells at reduced liver toxicity to the patients. The same gene therapy design may also be applied to treat tumours carrying mutations in the β-catenin gene, which is a central component of the APC signal transduction pathway. In summary, the principle for a rational design of a cancer specific treatment approach is demonstrated in this study. In the future, mutations in cancer patients will be more easily identified. Using the same principle developed in this study, specific regimen can be designed to treat these patients based on the specific genetic changes found in the tumour. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (α-gal A). This enzyme deficiency leads to impaired catabolism of α-galactosyl-terminal lipids such as globotriaosylceramide (Gb3). Patients develop painful neuropathy and vascular occlusions that progressively lead to cardiovascular, cerebrovascular, and renal dysfunction and early death. Although enzyme replacement therapy and bone marrow transplantation have shown promise in the murine analog of Fabry disease, gene therapy holds a strong potential for treating this disease in humans. Delivery of the normal α-gal A gene (cDNA) into a depot organ such as liver may be sufficient to elicit corrective circulating levels of the deficient enzyme. To investigate this possibility, a recombinant adeno-associated viral vector encoding human α-gal A (rAAV-AGA) was constructed and injected into the hepatic portal vein of Fabry mice. Two weeks postinjection, α-gal A activity in the livers of rAAV-AGA-injected Fabry mice was 20–35% of that of the normal mice. The transduced animals continued to show higher α-gal A levels in liver and other tissues compared with the untouched Fabry controls as long as 6 months after treatment. In parallel to the elevated enzyme levels, we see significant reductions in Gb3 levels to near normal at 2 and 5 weeks posttreatment. The lower Gb3 levels continued in liver, spleen, and heart, up to 25 weeks with no significant immune response to the virus or α-gal A. Also, no signs of liver toxicity occurred after the rAAV-AGA administration. These findings suggest that an AAV-mediated gene transfer may be useful for the treatment of Fabry disease and possibly other metabolic disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liver-on-chip systems are widely seen as having the potential to replace animal testing for long-term liver toxicity assessments. However, such systems necessitate solutions, such as electrochemical microsensors, to provide information about the cells exposed to chemical compounds in a confined space. This study describes the development of microsensors for the detection of alanine-aminotransferase (ALT), an intracellular enzyme found in hepatocytes, for monitoring the viability of in-vitro hepatic cell cultures. The electrochemical sensors were developed by using screen printed electrodes functionalized by drop-casting. These technologies are intended to produce disposable and low-cost sensors that can easily be exchanged once their performance is degraded. The sensors are capable of measuring ALT in a microfluidic environment through the detection of changes in glutamate concentration. The microsensors were found to be stable for more than 60 days and were successfully tested using hepatocellular lysates to assess their capability to quantify ALT activity in a hepatic cell culture. These results open the way to their integration in liver bioreactors to assess hepatocellular toxicity in-vitro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The prevalence of dementia is growing in developed countries where elderly patients are increasing in numbers. Neurotransmission modulation is one approach to the treatment of dementia. Cholinergic precursors, anticholinesterases, nicotine receptor agonists and muscarinic M-2 receptor antagonists are agents that enhance cholinergic neurotransmission and that depend on having some intact cholinergic innervation to be effective in the treatment of dementia. The cholinergic precursor choline alfoscerate may be emerging as a potential useful drug in the treatment of dementia, with few adverse effects. Of the anticholinesterases, donepezil, in addition to having a similar efficacy to tacrine in mild-to-moderate Alzheimer's disease (AD), appears to have major advantages; its use is associated with lower drop-out rates in clinical trials, a lower incidence of cholinergic-like side effects and no liver toxicity. Rivastigmine is efficacious in the treatment in dementia with Lewy bodies, a condition in which the other anticholinesterases have not been tested extensively to date. Galantamine is an anticholinesterase and also acts as an allosteric potentiating modulator at nicotinic receptors to increase the release of acetylcholine. Pooled data from clinical trials of patients with mild-to-moderate AD suggest that the benefits and safety profile of galantamine are similar to those of the anticholinesterases. Selective nicotine receptor agonists are being developed that enhance cognitive performance without influencing autonomic and skeletal muscle function, but these have not yet entered clinical trial for dementia. Unlike the cholinergic enhancers, the M, receptor agonists do not depend upon intact cholinergic nerves but on intact M, receptors for their action, which are mainly preserved in AD and dementia with Lewy bodies. The M, receptor-selective agonists developed to date have shown limited efficacy in clinical trials and have a high incidence of side effects. A major recent advancement in the treatment of dementia is memantine, a non-competitive antagonist at NMDA receptors. Memantine is beneficial in the treatment of severe and moderate to-severe AD and may also be of some benefit in the treatment of mild-to-moderate vascular dementia. Drugs that modulate 5-HT, somatostatin and noradrenergic neurotransmission are also being considered for the treatment of dementia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phthalates are industrial additives widely used as plasticizers. In addition to deleterious effects on male genital development, population studies have documented correlations between phthalates exposure and impacts on reproductive tract development and on the metabolic syndrome in male adults. In this work we investigated potential mechanisms underlying the impact of DEHP on adult mouse liver in vivo. A parallel analysis of hepatic transcript and metabolic profiles from adult mice exposed to varying DEHP doses was performed. Hepatic genes modulated by DEHP are predominantly PPARalpha targets. However, the induction of prototypic cytochrome P450 genes strongly supports the activation of additional NR pathways, including Constitutive Androstane Receptor (CAR). Integration of transcriptomic and metabonomic profiles revealed a correlation between the impacts of DEHP on genes and metabolites related to heme synthesis and to the Rev-erbalpha pathway that senses endogenous heme level. We further confirmed the combined impact of DEHP on the hepatic expression of Alas1, a critical enzyme in heme synthesis and on the expression of Rev-erbalpha target genes involved in the cellular clock and in energy metabolism. This work shows that DEHP interferes with hepatic CAR and Rev-erbalpha pathways which are both involved in the control of metabolism. The identification of these new hepatic pathways targeted by DEHP could contribute to metabolic and endocrine disruption associated with phthalate exposure. Gene expression profiles performed on microdissected testis territories displayed a differential responsiveness to DEHP. Altogether, this suggests that impacts of DEHP on adult organs, including testis, could be documented and deserve further investigations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Idiosyncratic hepatotoxicity is a well-known complication associated with aromatic antiepileptic drugs (AAED), and it has been suggested to occur due to the accumulation of toxic arene oxide metabolites. Although there is clear evidence of the participation of an immune process, a direct toxic effect involving mitochondria dysfunction is also possible. The effects of AAED on mitochondrial function have not been studied yet. Therefore, we investigated, in vitro, the cytotoxic mechanism of carbamazepine (CB), phenytoin (PT) and phenobarbital (PB), unaltered and bioactivated, in the hepatic mitochondrial function. The murine hepatic microsomal system was used to produce the anticonvulsant metabolites. All the bioactivated drugs (CB-B, PB-B, PT-B) affected mitochondrial function causing decrease in state three respiration, RCR, ATP synthesis and membrane potential, increase in state four respiration as well as impairment of Ca(2+) uptake/release and inhibition of calcium-induced swelling. As an unaltered drug, only PB, was able to affect mitochondrial respiration (except state four respiration) ATP synthesis and membrane potential; however, Ca(2+) uptake/release as well as swelling induction were not affected. The potential to induce mitochondrial dysfunction was PT-B > PB-B > CB-B > PB. Results suggest the involvement of mitochondrial toxicity in the pathogenesis of AAED-induced hepatotoxicity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives The aim of this work was to study the effects of P. major against the oxidative damage of isolated rat liver mitochondria. Methods The extracts were obtained using methanol (MeOH), ethyl acetate (EAc), dichloromethane (DCM), and hexane (Hex) as solvents. Key findings Hex, DCM, and EAc totally, and MeOH partially, inhibited ROS generation and lipid peroxidation of membranes induced by Fe2+ or t-BOOH. However, only MeOH was able to prevent the t-BOOH-induced glutathione and NAD(P)H oxidation. All extracts chelated Fe2+ and reduced DPP Hradicals. EPR analysis revealed that P. major exhibited potent scavenger activity for hydroxyl radicals. Conclusions The potent antioxidant activity exhibited by P. major was able to prevent oxidative mitochondrial damage, contributing to the understanding of its hepatoprotective action against ROS-mediated toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce the use of Ingenuity Pathway Analysis to analyzing global metabonomics in order to characterize phenotypically biochemical perturbations and the potential mechanisms of the gentamicin-induced toxicity in multiple organs. A single dose of gentamicin was administered to Sprague Dawley rats (200 mg/kg, n = 6) and urine samples were collected at -24-0 h pre-dosage, 0-24, 24-48, 48-72 and 72-96 h post-dosage of gentamicin. The urine metabonomics analysis was performed by UPLC/MS, and the mass spectra signals of the detected metabolites were systematically deconvoluted and analyzed by pattern recognition analyses (Heatmap, PCA and PLS-DA), revealing a time-dependency of the biochemical perturbations induced by gentamicin toxicity. As result, the holistic metabolome change induced by gentamicin toxicity in the animal's organisms was characterized. Several metabolites involved in amino acid metabolism were identified in urine, and it was confirmed that gentamicin biochemical perturbations can be foreseen from these biomarkers. Notoriously, it was found that gentamicin induced toxicity in multiple organs system in the laboratory rats. The proof-of-knowledge based Ingenuity Pathway Analysis revealed gentamicin induced liver and heart toxicity, along with the previously known toxicity in kidney. The metabolites creatine, nicotinic acid, prostaglandin E2, and cholic acid were identified and validated as phenotypic biomarkers of gentamicin induced toxicity. Altogether, the significance of the use of metabonomics analyses in the assessment of drug toxicity is highlighted once more; furthermore, this work demonstrated the powerful predictive potential of the Ingenuity Pathway Analysis to study of drug toxicity and its valuable complementation for metabonomics based assessment of the drug toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To optimize the animal model of liver injury that can properly represent the pathological characteristics of dampness-heat jaundice syndrome of traditional Chinese medicine. METHODS: The liver injury in the model rat was induced by alpha-naphthylisothiocyanate (ANIT) and carbon tetrachloride (CCl(4) ) respectively, and the effects of Yinchenhao Decoction (, YCHD), a proved effective Chinese medical formula for treating the dampness-heat jaundice syndrome in clinic, on the two liver injury models were evaluated by analyzing the serum level of alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP), malondialchehyche (MDA), total bilirubin (T-BIL), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) as well as the ratio of liver weight to body weight. The experimental data were analyzed by principal component analytical method of pattern recognition. RESULTS: The ratio of liver weight to body weight was significantly elevated in the ANIT and CCl(4) groups when compared with that in the normal control (P<0.01). The contents of ALT and T-BIL were significantly higher in the ANIT group than in the normal control (P<0.05,P<0.01), and the levels of AST, ALT and ALP were significantly elevated in CCl(4) group relative to those in the normal control P<0.01). In the YCHD group, the increase in AST, ALT and ALP levels was significantly reduced (P<0.05, P<0.01), but with no significant increase in serum T-BIL. In the CCl(4) intoxicated group, the MDA content was significantly increased and SOD, GSH-PX activities decreased significantly compared with those in the normal control group, respectively (P<0.01). The increase in MDA induced by CCl(4) was significantly reduced by YCHD P<0.05). CONCLUSION: YCHD showed significant effects on preventing liver injury progression induced by CCl(4), and the closest or most suitable animal model for damp-heat jaundice syndrome may be the one induced by CCl(4).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indospicine is a non-proteinogenic amino acid which occurs in Indigofera species with widespread prevalence in grazing pastures across tropical Africa, Asia, Australia, and the Americas. It accumulates in the tissues of grazing livestock after ingestion of Indigofera. It is a competitive inhibitor of arginase and causes both liver degeneration and abortion. Indospicine hepatoxicity occurs universally across animal species but the degree varies considerably between species, with dogs being particularly sensitive. The magnitude of canine sensitivity is such that ingestion of naturally indospicine-contaminated horse and camel meat has caused secondary poisoning of dogs, raising significant industry concern. Indospicine impacts on the health and production of grazing animals per se has been less widely documented. Livestock grazing Indigofera have a chronic and cumulative exposure to this toxin, with such exposure experimentally shown to induce both hepatotoxicity and embryo-lethal effects in cattle and sheep. In extensive pasture systems, where animals are not closely monitored, the resultant toxicosis may well occur after prolonged exposure but either be undetected, or even if detected not be attributable to a particular cause. Indospicine should be considered as a possible cause of animal poor performance, particularly reduced weight gain or reproductive losses, in pastures where Indigofera are prevalent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With transplant rejection rendered a minor concern and survival rates after liver transplantation (LT) steadily improving, long-term complications are attracting more attention. Current immunosuppressive therapies, together with other factors, are accompanied by considerable long-term toxicity, which clinically manifests as renal dysfunction, high risk for cardiovascular disease, and cancer. This thesis investigates the incidence, causes, and risk factors for such renal dysfunction, cardiovascular risk, and cancer after LT. Long-term effects of LT are further addressed by surveying the quality of life and employment status of LT recipients. The consecutive patients included had undergone LT at Helsinki University Hospital from 1982 onwards. Data regarding renal function – creatinine and estimated glomerular filtration rate (GFR) – were recorded before and repeatedly after LT in 396 patients. The presence of hypertension, dyslipidemia, diabetes, impaired fasting glucose, and overweight/obesity before and 5 years after LT was determined among 77 patients transplanted for acute liver failure. The entire cohort of LT patients (540 patients), including both children and adults, was linked with the Finnish Cancer Registry, and numbers of cancers observed were compared to site-specific expected numbers based on national cancer incidence rates stratified by age, gender, and calendar time. Health-related quality of life (HRQoL), measured by the 15D instrument, and employment status were surveyed among all adult patients alive in 2007 (401 patients). The response rate was 89%. Posttransplant cardiovascular risk factor prevalence and HRQoL were compared with that in the age- and gender-matched Finnish general population. The cumulative risk for chronic kidney disease increased from 10% at 5 years to 16% at 10 years following LT. GFR up to 10 years after LT could be predicted by the GFR at 1 year. In patients transplanted for chronic liver disease, a moderate correlation of pretransplant GFR with later GFR was also evident, whereas in acute liver failure patients after LT, even severe pretransplant renal dysfunction often recovered. By 5 years after LT, 71% of acute liver failure patients were receiving antihypertensive medications, 61% were exhibiting dyslipidemia, 10% were diabetic, 32% were overweight, and 13% obese. Compared with the general population, only hypertension displayed a significantly elevated prevalence among patients – 2.7-fold – whereas patients exhibited 30% less dyslipidemia and 71% less impaired fasting glucose. The cumulative incidence of cancer was 5% at 5 years and 13% at 10. Compared with the general population, patients were subject to a 2.6-fold cancer risk, with non-melanoma skin cancer (standardized incidence ratio, SIR, 38.5) and non-Hodgkin lymphoma (SIR 13.9) being the predominant malignancies. Non-Hodgkin lymphoma was associated with male gender, young age, and the immediate posttransplant period, whereas old age and antibody induction therapy raised skin-cancer risk. HRQoL deviated clinically unimportantly from the values in the general population, but significant deficits among patients were evident in some physical domains. HRQoL did not seem to decrease with longer follow-up. Although 87% of patients reported improved working capacity, data on return to working life showed marked age-dependency: Among patients aged less than 40 at LT, 70 to 80% returned to work, among those aged 40 to 50, 55%, and among those above 50, 15% to 28%. The most common cause for unemployment was early retirement before LT. Those patients employed exhibited better HRQoL than those unemployed. In conclusion, although renal impairment, hypertension, and cancer are evidently common after LT and increase with time, patients’ quality of life remains comparable with that of the general population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, d-aminolevulinate synthase (ALAS), and the last enzyme, ferrochelatase (FC), in the heme-biosynthetic pathway of Plasmodium berghei (Pb). The wild-type and knockout (KO) parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using 4-(14) C] aminolevulinic acid (ALA). We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.