748 resultados para lithium-ion
Resumo:
Le marché des accumulateurs lithium-ion est en expansion. Cette croissance repose partiellement sur la multiplication des niches d’utilisation et l’amélioration constante de leurs performances. En raison de leur durabilité exceptionnelle, de leur faible coût, de leur haute densité de puissance et de leur fiabilité, les anodes basées sur les titanates de lithium, et plus particulièrement le spinelle Li4Ti5O12, présentent une alternative d’intérêt aux matériaux classiques d’anodes en carbone pour de multiples applications. Leur utilisation sous forme de nanomatériaux permet d’augmenter significativement la puissance disponible par unité de poids. Ces nanomatériaux ne sont typiquement pas contraints dans une direction particulière (nanofils, nanoplaquettes), car ces formes impliquent une tension de surface plus importante et requièrent donc généralement un mécanisme de synthèse dédié. Or, ces nanostructures permettent des réductions supplémentaires dans les dimensions caractéristiques de diffusion et de conduction, maximisant ainsi la puissance disponible, tout en affectant les propriétés habituellement intrinsèques des matériaux. Par ailleurs, les réacteurs continus reposant sur la technologie du plasma thermique inductif constituent une voie de synthèse démontrée afin de générer des volumes importants de matériaux nanostructurés. Il s’avère donc pertinent d’évaluer leur potentiel dans la production de titanates de lithium nanostructurés. La pureté des titanates de lithium est difficile à jauger. Les techniques de quantification habituelles reposent sur la fluorescence ou la diffraction en rayons X, auxquelles le lithium élémentaire se prête peu ou pas. Afin de quantifier les nombreuses phases (Li4Ti5O12, Li2Ti3O7, Li2TiO3, TiO2, Li2CO3) identifiées dans les échantillons produits par plasma, un raffinement de Rietveld fut développé et validé. La présence de γ-Li2TiO3 fut identifiée, et la calorimétrie en balayage différentiel fut explorée comme outil permettant d’identifier et de quantifier la présence de β-Li2TiO3. Différentes proportions entre les phases produites et différents types de morphologies furent observés en fonction des conditions d’opération du plasma. Ainsi, des conditions de trempe réductrice et d’ensemencement en Li4Ti5O12 nanométrique semblent favoriser l’émergence de nanomorphologies en nanofils (associés à Li4Ti5O12) et en nanoplaquette (associées à Li2TiO3). De plus, l’ensemencement et les recuits augmentèrent significativement le rendement en la phase spinelle Li4Ti5O12 recherchée. Les recuits sur les poudres synthétisées par plasma indiquèrent que la décomposition du Li2Ti3O7 produit du Li4Ti5O12, du Li2TiO3 et du TiO2 (rutile). Afin d’approfondir l’investigation de ces réactions de décomposition, les paramètres cristallins du Li2Ti3O7 et du γ-Li2TiO3 furent définis à haute température. Des mesures continues en diffraction en rayon X à haute température furent réalisées lors de recuits de poudres synthétisées par plasma, ainsi que sur des mélanges de TiO2 anatase et de Li2CO3. Celles-ci indiquent la production d’un intermédiaire Li2Ti3O7 à partir de l’anatase et du carbonate, sa décomposition en Li4Ti5O12 et TiO2 (rutile) sur toute la plage de température étudiée, et en Li2TiO3 et TiO2 (rutile) à des températures inférieures à 700°C.
Resumo:
A low cost electrophoretic deposition (EPD) process was successfully used for liquid metal thin film deposition with a high depositing rate of 0.6 µ/min. Furthermore, silicon nano-powder and liquid metal were then simultaneously deposited as the negative electrode of lithium-ion battery by a technology called co-EPD. The liquid metal was hoping to act as the matrix for silicon particles during lithium ion insertion and distraction. Half-cell testing was performed using as prepared co-EPD sample. An initial discharge capacity of 1500 mAh/g was reported for nano-silicon and galinstan electrode, although the capacity fading issue of these samples was also observed.
Resumo:
Lithium Ion (Li-Ion) batteries have got attention in recent decades because of their undisputable advantages over other types of batteries. They are used in so many our devices which we need in our daily life such as cell phones, lap top computers, cameras, and so many electronic devices. They also are being used in smart grids technology, stand-alone wind and solar systems, Hybrid Electric Vehicles (HEV), and Plug in Hybrid Electric Vehicles (PHEV). Despite the rapid increase in the use of Lit-ion batteries, the existence of limited battery models also inadequate and very complex models developed by chemists is the lack of useful models a significant matter. A battery management system (BMS) aims to optimize the use of the battery, making the whole system more reliable, durable and cost effective. Perhaps the most important function of the BMS is to provide an estimate of the State of Charge (SOC). SOC is the ratio of available ampere-hour (Ah) in the battery to the total Ah of a fully charged battery. The Open Circuit Voltage (OCV) of a fully relaxed battery has an approximate one-to-one relationship with the SOC. Therefore, if this voltage is known, the SOC can be found. However, the relaxed OCV can only be measured when the battery is relaxed and the internal battery chemistry has reached equilibrium. This thesis focuses on Li-ion battery cell modelling and SOC estimation. In particular, the thesis, introduces a simple but comprehensive model for the battery and a novel on-line, accurate and fast SOC estimation algorithm for the primary purpose of use in electric and hybrid-electric vehicles, and microgrid systems. The thesis aims to (i) form a baseline characterization for dynamic modeling; (ii) provide a tool for use in state-of-charge estimation. The proposed modelling and SOC estimation schemes are validated through comprehensive simulation and experimental results.
Resumo:
Graphite is a mineral commodity used as anode for lithium-ion batteries (LIBs), and its global demand is doomed to increase significantly in the future due to the forecasted global market demand of electric vehicles. Currently, the graphite used to produce LIBs is a mix of synthetic and natural graphite. The first one is produced by the crystallization of petroleum by-products and the second comes from mining, which causes threats related to pollution, social acceptance, and health. This MSc work has the objective of determining compositional and textural characteristics of natural, synthetic, and recycled graphite by using SEM-EDS, XRF, XRD, and TEM analytical techniques and couple these data with dynamic Material Flow Analysis (MFA) models, which have the objective of predicting the future global use of graphite in order to test the hypothesis that natural graphite will no longer be used in the LIB market globally. The mineral analyses reveal that the synthetic graphite samples contain less impurities than the natural graphite, which has a rolled internal structure similar to the recycled one. However, recycled graphite shows fractures and discontinuities of the graphene layers caused by the recycling process, but its rolled internal structure can help the Li-ions’ migration through the fractures. Three dynamic MFA studies have been conducted to test distinct scenarios that include graphite recycling in the period 2022-2050 and it emerges that - irrespective of any considered scenario - there will be an increase of synthetic graphite demand, caused by the limited stocks of battery scrap available. Hence, I conclude that both natural and recycled graphite is doomed to be used in the LIB market in the future, at least until the year 2050 when the stock of recycled graphite production will be enough to supersede natural graphite. In addition, some new improvement in the dismantling and recycling processes are necessary to improve the quality of recycled graphite.
Resumo:
The structure, thermal stability, morphology and ion conductivity of titanium perovskites with the general formula Li3xLn2/3−xTiO3 (Ln = rare earth element; 3x= 0.30) are studied in the context of their possible use as solid electrolyte materials for lithium ion batteries. Materials are prepared by a glycine-nitrate method using different sintering treatments, with a cation-disorder-induced structural transition from tetragonal to cubic symmetry, detected as quenching temperature increases. SEM images show that the average grain size increases with increasing sintering temperature and time. Slightly higher bulk conductivity values have been observed for quenched samples sintered at high temperature. Bulk conductivity decreases with the lanthanide ion size. A slight conductivity enhancement, always limited by grain boundaries, is observed for longer sintering times. TDX measurements of the electrolyte/cathode mixtures also show a good stability of the electrolytes in the temperature range of 30-1100ºC.
Resumo:
Several possibilities are arising aiming the development of “greener”, more sustainable energy storage systems. One point is the completely water-based processing of battery electrodes, thus being able to renounce the use of toxic solvents in the preparation process. Despite its advantage of lower cost and eco-friendlyness, there is the need of similar mechanical and electrochemichal behavior for boosting this preparation mode. Another point – accompanying the water-based processing - is the replacement of solvent-based polymer binders by water-based ones. These binders can be based on fluorinated, crude-oil based polymers on the one side, but also on naturally abundant and economic friendly biopolymers. The most common anode materials, graphite and lithium titanate (LTO), have been subjected a water-based preparation route with different binder systems. LTO is a promising anode material for lithium ion batteries (LIBs), as it shows excellent safety characteristics, does not form a significant SEI and its volume change upon intercalation of lithium ions is negligible. Unfortunately, this material suffers from a rather low electric conductivity - that is why an intensive study on improved current collector surfaces for LTO electrodes was performed. In order to go one step ahead towards sustainable energy storage, anode and cathode active materials for a sodium ion battery were synthesized. Anode active material resulted in a successful product which was then subjected to further electrochemical tests. In this PhD work the development of “greener” energy storage possibilities is tested under several aspects. The ecological impact of raw materials and required battery components is examined in detail.
Resumo:
The tetraalcohol 2,3,5,6-endo,endo,endo,endo-tetrakis(hydroxymethyl]bicyclo[2.2.1]heptane (tetol, 1) has been prepared and crystallises readily as the lithium(I) complex [Li(1)(2)]Cl, forming an oligomeric multi-chain structure in which pairs of alcohols from two crystallographically independent tetol molecules bind lithium ions tetrahedrally. However, formation of monomeric structures in solution is inferred from electrospray mass spectroscopy, which has also shown evidence of exchange of lithium ion in the complexed species by added alkaline earth ions. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of ~272 nm and a degree of porosity of ~87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.
Resumo:
One important component with particular relevance in battery performance is the cathode, being one of the main responsible elements for cell capacity and cycle life. Carbon coated lithium iron phosphate, C-LiFePO4, active material is one of the most promising cathode materials for the next generation of large scale lithium ion battery applications and strong research efforts are being devoted to it, due to its excellent characteristics, including high capacity, ~170 mAh/g, and safety. This review summarizes the main developments on C-LiFePO4 based cathode film preparation and performance. The effect of the binder, conductive additive, relationship between active material-binder-conductive additive and drying step, in the electrode film fabrication and performance is presented and discussed. Finally, after the presentation of the cell types fabricated with C-LiFePO4 active material and their performance, some conclusions and guidelines for further investigations are outlined.
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores.
Resumo:
The work presented in the thesis is centered around two important types of cathode materials, the spinel structured LixMn204 (x =0.8to1.2) and the phospho -oIivine structured LiMP04 (M=Fe and Ni). The spinel system LixMn204, especially LiMn204 corresponding to x= 1 has been extensively investigated to understand its structural electrical and electrochemical properties and to analyse its suitability as a cathode material in rechargeable lithium batteries. However there is no reported work on the thermal and optical properties of this important cathode material. Thermal diffusivity is an important parameter as far as the operation of a rechargeable battery is concerned. In LixMn204, the electronic structure and phenomenon of Jahn-Teller distortion have already been established theoretically and experimentally. Part of the present work is an attempt to use the non-destructive technique (NDT) of photoacoustic spectroscopy to investigate the nature of the various electronic transitions and to unravel the mechanisms leading to the phenomenon of J.T distortion in LixMn204.The phospho-olivines LiMP04 (M=Fe, Ni, Mn, Co etc) are the newly identified, prospective cathode materials offering extremely high stability, quite high theoretical specific capacity, very good cycIability and long life. Inspite of all these advantages, most of the phospho - olivines especially LiFeP04 and LiNiP04 show poor electronic conductivity compared to LixMn204, leading to low rate capacity and energy density. In the present work attempts have been made to improve the electronic conductivity of LiFeP04 and LiNiP04 by adding different weight percentage MWNT .It is expected that the addition of MWNT will enhance the electronic conductivity of LiFeP04 and LiNiP04 with out causing any significant structural distortions, which is important in the working of the lithium ion battery.
Resumo:
The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A simple, cheap and versatile, polyol-mediated fabrication method has been extended to the synthesis of tin oxide nanoparticles on a large scale. Ultrafine SnO2 nanoparticles with crystallite sizes of less than 5 nm were realized by refluxing SnCl2 . 2H(2)O in ethylene glycol at 195 degrees C for 4 h under vigorous stirring in air. The as-prepared SnO2 nanoparticles exhibited enhanced Li-ion storage capability and cyclability, demonstrating a specific capacity of 400 mAh g(-1) beyond 100 cycles. (c) 2006 Elsevier B.V. All rights reserved.